PUBLISHED BY INSTITUTE OF PHYSICS PUBLISHING FOR SISSA

=~ 4 RECEIVED: July 2, 2007
ACCEPTED: July 18, 2007
PUBLISHED: July 30, 2007

Generalised geometry for M-theory

Christopher M. Hull

Theoretical Physics Group, Blackett Laboratory, Imperial College,
London SW7 2BZ, U.K.
E-mail: k£.hull@imperial .ac.ul

ABSTRACT: Generalised geometry studies structures on a d-dimensional manifold with a
metric and 2-form gauge field on which there is a natural action of the group SO(d, d). This
is generalised to d-dimensional manifolds with a metric and 3-form gauge field on which
there is a natural action of the group E;. This provides a framework for the discussion of
M-theory solutions with flux. A different generalisation is to d-dimensional manifolds with
a metric, 2-form gauge field and a set of p-forms for p either odd or even on which there is
a natural action of the group Eg;1. This is useful for type IIA or IIB string solutions with
flux. Further generalisations give extended tangent bundles and extended spin bundles
relevant for non-geometric backgrounds. Special structures that arise for supersymmetric

backgrounds are discussed.
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1. Introduction

Hitchin’s generalised geometry [fl]-[H] studies structures on a d-dimensional manifold M
on which there is a natural action of the group SO(d,d), and in particular it gives an
elegant description of geometries equipped with both a metric G and a 2-form B. Such
geometries with a metric and 2-form and an action of SO(d,d) arise in string theory, so



that this is a natural framework in which to formulate many problems in string theory
and supergravity [§]-[R(]. However, in type II string theory, the group SO(d, d) is part of
a much larger ‘U-duality’ group 1, B3] E4y1 that acts on G and B together with a set
of other fields on M (the Ramond-Ramond gauge fields) and this suggests that seeking
a generalisation of generalised geometry with SO(d,d) replaced by E4y; might provide a
natural framework for the geometries with flux in type II string theory. Here F,, is the
maximally non-compact real form of the group of rank-n with E-type Dynkin diagram,
so that it is the exceptional group E, for n = 6,7,8. The U-duality groups F, and their
maximal compact subgroups H,, are given in table 1 for 2 < n < 8. These groups were
found to be symmetries of supergravity theories in [R1] and the global structure of these
groups and their maximal subgroups was discussed in [23, B4].

M-theory has a similar structure in which there is a metric G and 3-form C' on an
n-dimensional manifold M with a natural action of E,, and again one might expect a
generalisation of generalised geometry with the 3-form C' playing a central role. The
relationship between M-theory and string theory suggests that if the manifold M is a
circle bundle over a manifold M of dimension d = n — 1, then the M-geometry on M
should reduce to a stringy generalised geometry on M.

The aim of this paper is to propose such generalisations, and to set up the framework
needed to study general supersymmetric string or M-theory backgrounds, including non-
geometric ones. This will lead to the introduction of new structures, and in particular
to extended tangent bundles and extended spin bundles for type II geometries and M-
geometries. It will be convenient to refer to the usual generalised geometry involving
SO(d, d) as a type I geometry, to distinguish it from these other geometries, and it indeed
plays a role in type I superstrings.

In generalised geometry, the tangent bundle T is replaced with T @ T*, the sum of
the tangent and cotangent bundles, which has a natural inner product of signature (d, d)
preserved by the action of SO(d,d). This group includes the action of a 2-form on the
geometry, which acts as a shift of B. A generalisation of the spin bundle is a bundle S
over M with transition functions in Spin(d,d). Given a choice of spin structure, there is
a correspondence between S and the bundle A*T™ of formal sums of differential forms on
M, and S splits into the chiral and anti-chiral sub-bundles S* and S~ corresponding to
even and odd forms respectively. The perturbative charges of string theory (momentum
and string charge) fit into a vector of SO(d,d). In addition, there are Ramond-Ramond
charges which are even forms for the type IIA string and odd forms for the IIB string,
and the Ramond-Ramond charges transform according to the spinor representation of the
SO(d,d) subgroup of the U-duality group [PJ]. This suggests that T' @ T* be extended to
ToT*® ST for IIA or T ®T* @ S~ for IIB. This turns out to be sufficient for d < 4, but
for d > 4 there are further charges consisting of a five-brane charge given by a 5-form in
APT* and a charge related to the Kaluza-Kein monopoles! B represented by a 5-vector in

In D =10 or D = 11, there is a 5-form charge in the superalgebra, Zas, . .a5. Decomposing the indices
M = (0,4) where s = 1,...,D — 1 is a spatial index and 0 is a time index gives two charges, a spatial
5-form charge Z;, ...;; which is the NS-NS or M-theory 5-brane charge, and a spatial 4-form charge Zo;, ...i,,
which is the Kaluza-Kein monopole charge, Hodge-dual to a spatial D — 5-vector Z% -5 [@] This gives



AT, so that for type II strings the tangent bundle is generalised to the extended tangent
bundle

ToT AT o AT @ St

As will be seen in section fi, there is a natural action of E4.1 on this space for d < 6.

A bundle with structure group O(d,d) is reducible to an O(d) x O(d) bundle. In
generalised geometry, the metric G and 2-form B arise as the moduli for such reductions,
and parameterise a coset space O(d,d)/O(d) x O(d). This is generalised to the coset
E4+1/Hg+1 which can be parameterised by a metric G and 2-form B and scalar ®, together
with a set of odd forms C4,Cs, ... for ITA geometries or a set of even forms Cy, Co,Cy, . ..
for IIB geometries. These extra fields have a natural interpretation in type II string theory
as the dilaton ® and the Ramond-Ramond p-form gauge fields C,. The formal sums
Ct=Cy+Coy+Cy+--- or C” =Cy +C3+ Cs + --- transform as chiral spinors under
Spin(d,d), with the index + indicating the chirality. The action of Egz;1 on these fields
includes shifts for each of the p-form gauge fields of the theory.

Comparison with M-theory suggests a different generalisation, replacing 7™ (corre-
sponding to a string charge) with A2T* (corresponding to a membrane charge), so that
the extended tangent bundle includes T @ A*T*. For manifolds of dimension n > 4, it is
necessary to add AST* (corresponding to a 5-brane charge), and for n > 5 an additional
AST (the Kaluza-Kein monopole charge [BJ]) is needed. Then for n < 7, the extended
tangent bundle is

T & A*T* @ A°T* @ A°T

There is a natural action of F,, on this. The coset space E,,/H, can be parameterised by
a metric G, a 3-form C and (for n > 6) a 6-form C on the n-dimensional manifold. The
3-form C can be associated with the 3-form gauge field of 11-dimensional supergravity,
and the 6-form C with the dual gauge field. (Recall that a free 3-form gauge field in
11-dimensions has a dual representation in terms of a 6-form gauge field, related by an
electromagnetic duality, déﬁ ~ xd(C3. The Chern-Simons interaction of 11-dimensional
supergravity prevents the dualisation to a theory written in terms of a 6-form gauge field,
but it can be written in terms of both a 3-form C and a 6-form C, 6].) The action of E,
on these fields includes shifts of the 3-form field C' and 6-form field C.

For a d-dimensional manifold, the structure group of T', T, T'® T™ (and their tensor
products) is in GL(d,R), which is a subgroup of O(d,d). Twisting with a gerbe can
enlarge the structure group to include the action of exact 2-forms [, B, fl], but this is
still only a part of O(d,d); this is the ‘geometric subgroup’ that preserves the Courant
bracket. However, the covariance under the larger group O(d,d) is very suggestive, and
this suggests that bundles with this larger structure group might have an interesting role
to play. String theory can in fact be formulated on a large class of spaces with so-called
non-geometric structures, and including these allows a wider class of transition functions.
For example, for string theory on a manifold M that is an m-torus bundle with fibres
T™, there is a symmetry under the action of the T-duality group O(m,m;Z), which in

charges in AT @ AT for D = 10 or in AST @ APT* for D = 11.



n E, H, dim(E,) dim(E,/H,)
2 SL(2,R) x R SO(2) 4 3

3 | SL(3,R) x SL(2,R)  SO(3) x SO(2) 11 7

4 SL(5, R) SO(5) 24 14

5 Spin(5,5) (Sp(2) x Sp(2))/Z 45 25

6 Ege Sp(4)/Z> 78 42

7 Eqn) SU(8)/Z, 133 70

8 Eys) Spin(16)/Z5 248 128

Table 1: The U-duality groups F,, their maximal compact subgroups H,,, and the dimensions of
E,, and the cosets E,,/H,.

particular mixes the metric and B-field together. This symmetry allows the construction
of T-folds. These are spaces built from patches which are each of the form U, x T™
with U, open sets in the base, and with transition functions that include O(m,m;Z)
T-duality transformations [R7. As the patching is through symmetries of the theory,
it leads to consistent backgrounds of string theory. However, these are not manifolds
equipped with tensor fields but are considerably more general. The generalised tangent
bundle for such spaces has O(d, d) transition functions not contained within the geometric
subgroup. These have generalisations to U-folds with fibres T™" whose transistion functions
include transformations in the U-duality group Ey,+1(Z) [, and the extended geometries
discussed here provide a natural framework to discuss these geometries. Examples of T-
folds have been studied in [Bd|-[BY].

2. Generalised geometry

2.1 The structure of generalised geometry

In Hitchin’s generalised geometry, the tangent bundle T" of a d-dimensional manifold M is
replaced with T" @ T™, so that one considers the formal sum V = v + £ of a vector field
v with components v (i = 1,...,d) and a one-form ¢ with components &;, which can be
thought of as a vector with 2d components V!

vi= <z:> , (2.1)

There is a natural inner product 7 of signature (d, d) defined by

n(v+8&v+§) =208

where ¢ denotes the interior product, so that ¢,& = v’¢;. The metric has components 7y

n=<ﬁ§> 22)

given by



This is invariant under the orthogonal group O(d,d), with V transforming in the vector
representation V — gV, where g is represented by a matrix ¢’ ; satisfying

g'ng=n (2.3)

The Lie algebra of O(d,d) consists of matrices with the block decomposition

A B
() o

Here Aij is an arbitrary d x d matrix, and so is a generator of the GL(d,R) subgroup of

(jow (M(t))1> ) (2'5)

for arbitrary invertible matrices M ij. The ©;; are components of a 2-form © € AT

10
(1) v

v+E— v+ E+ 1,0 (2.7)

matrices g of the form

generating the group of matrices

sending

while 3 € AT is a generator of the group of matrices of the form

1p
() o

v+E— v+ 4 wef (2.9)

sending

The ‘geometric subgroup’ GL(d,R) x RH4=1)/2 generated by A, © of matrices of the form
M 0

2.10

(@ (Mt)_1> Y ( )

There is a natural action of Spin(d,d) on the bundle of formal sums of differential

will play a role in what follows.

forms A®*T™* on M, so that interesting geometric structures can be formulated in terms of
spinors. For each V. =v+ & € T & T*, there is a map 'y : A*T* — A®T* such that

Lv:ig—wd+E{ND
for any ¢ € A*T*. These maps satisfy a Clifford algebra, with

TyTy + Ty Ty = —2p(V, V')1 (2.11)



The Clifford action on A*T™ gives in particular a representation of Spin(d,d) on A*T™.
The action of GL(d,R) C Spin(d,d) on A*T* is not quite the usual one. If the standard
action of M € GL(d,R) on A*T* is denoted M*, the action of GL(d,R) C Spin(d,d) is

¢ — |det M|Y2M*¢
so that the relation with the spin bundle S is
S = AT* @ (A"T)/?

The bundle of forms splits into the bundle ATT* of even forms and the bundle A=T* of
odd forms, corresponding to the decomposition of S into bundles S* of positive or negative
chirality spinors, with

Si _ AiT* ®Q (AdT)1/2

The bundle (AT)'/? is trivial and so there is always a non-canonical isomorphism S* ~
ATT*; S* and A*T* will be used interchangably for the remainder of the paper. (There
is in addition another possible spin structure [{f], but this will not be used here.)

The Courant bracket provides a generalisation of the Lie bracket to T @ T, and
plays a central role in generalised geometry, and is preserved under (R.7) provided © is
closed. According to Hitchin [J], generalised geometries are structures on T @ T* that are
compatible with the SO(d, d) structure and which satisfy integrability conditions expressed
in terms of the Courant bracket or the exterior derivative.

The transition functions for M are diffeomorphisms, so that the transition functions
for T ® T* are in GL(d,R), although it is sometimes useful to instead regard it as having
structure group in SO(d, d) [[f]. This can be generalised by twisting with a gerbe, as will be
reviewed in the next subsection. For d = 2m, a generalised almost complex structure is an
endomorphism J of T'@®T™ that satisfies J 2 — —1 and with respect to which the metric n
is hermitian. It is a generalised complex structure if it is integrable, i.e. the +i-eigenbundle
E < (T @& T*)®C is such that the space of sections of E is closed under the Courant
bracket. Such a structure is preserved under the U(m,m) subgroup of SO(2m,2m).

Cualtieri introduced the concept of a generalised metric H on T @ T* [d]. This is
a positive definite metric compatible with 7, and defines a sub-bundle E{ on which 7 is
positive definite. The generalised metric can be represented by a matrix Hj; satisfying the

compatibility condition

n ' Hy Tt =H (2.12)
This implies that S defined by
S=n'H (2.13)
satisfies
S? =1 (2.14)

and so is an almost real structure or almost local product structure. (S is sometimes also
referred to as the generalised metric [l].) It has d eigenvalues of +1 and d eigenvalues of
—1, and Ey is the +1 eigenbundle.



The constraint (2.13) implies that H has d? independent components and it can be
parameterised in terms of a symmetric matrix G;; and an anti-symmetric matrix B;; as

G- BG~'B BG™!
H = < orlp ) (2.15)

and H is positive definite if G is. The norm of the vector V = v + £ is then
H(V.V) = G(0,0) + G7(€ + 0B, § + 10 B) (2.16)
where G* is the metric on T* given by the inverse of G and (i, B); = v/ Bj;. Thus intro-
ducing a generalised metric is equivalent to introducing a positive definite metric G and a
2-form B on M. This can be generalised to a metric G of signature (p,q) on M, in which
case the generalised metric given by (R.17) has signature (2p, 2q).
Under an SO(d, d) transformation
H — ¢'Hg (2.17)
This corresponds to a fractional linear transformation of G, B. Defining the d x d matrix

Eij = Gij + Bij (218)

and decomposing ¢ into d x d matrices a, b, c,d

g= <Z Z) (2.19)

gng=n = dc+ca=0, bd+db=0, dd+cb=1, (2.20)

so that

then the transformation of G, B under the action of the SO(d, d) transformation g is
E' = (aE 4+ b)(cE +d)~ " (2.21)
In particular, the action of the GL(d,R) subgroup (R.5) is the linear transformation
G — M'GM, B — M'BM, (2.22)
while the © transformation (R.6) leaves G invariant and acts as a shift of B:
B—B+6 (2.23)

However, SO(d, d) transformations not in the geometric subgroup will mix G and B.



2.2 Gerbes and the generalised tangent bundle

For T@&T™, the structure group is GL(d, R) and introducing a generalised metric corresponds
to introducing a symmetric tensor field G and an anti-symmetric tensor field B on M.
However, this can be generalised to allow B to be a gerbe conection, i.e. a 2-form gauge
field with field strength H = dB, allowing a twisting of this construction to allow transition
functions including the B-shift.

Given an open cover {U,} of M, there is a 2-form B, in each {U,} with Bg — B, a
closed 2-form on the overlap U, N Ug, so that dBg = dB, = H is a globally defined closed
three-form H. For a suitable open cover, the overlaps have trivial cohomology and

Bg — B, = d\up
for some 1-form A, on the overlap U, N Ug. Consistency on triple overlaps U, N Ug N U,
requires that A\og + Agy + Ay is closed and so exact. If it is of the form
Aap + gy + Mo = 95,0906y
for some U(1)-valued functions
Gopy : UaNUzNU, — S!

satisfying gng, = ggéy and gm(;g;vlégaﬁ(;g;éy =1on U, NUgNU,NUs, then B, defines a
connection on a gerbe and H represents an integral cohomology class. (If H is not in an
integral cohomology class, then

Aag + Ay + Aya = dpapy

for some 0-form p,g, in U,NUgNU, satisfying a further consistency condition in quadruple
overlaps.)

The A\, can be used to define a bundle £ over M by identifying T'® T™ on U, with
T ®T* on Ug by the B-field action

v+ = v+ dhag

The fibre over a point x in M is again T, & T, but the transition functions are no longer
in GL(d,R). The bundle E has been called a generalised tangent bundle [ and has a
structure group in the geometric subgroup of SO(d, d), i.e. the subgroup GL(d,R) x Q>
where Q%< is the space of closed 2-forms.

3. The structure of extended geometries
3.1 Type I extended geometries: generalising the generalised tangent bundle
and spin bundle

To incorporate structures such as T-folds and other non-geometric backgrounds, it is useful
to generalise the structure further and consider general bundles E over a d-dimensional



space M with structure group O(d,d) or SO(d, d) and split-signature fibre metric 7; these
will be generalised geometries in the sense of Hitchin only in the special case in which
the structure group is in the geometric subgroup preserving the Courant bracket, and will
only correspond to T' @ T* if the structure group is in GL(d,R). Locally, one can find
a metric G and 2-form B as before, but general O(d,d) transition functions mix G and
B, so that these will not be tensor fields on M in general, and the background will be
‘non-geometric’. Nonetheless, such backgrounds with m-torus fibrations and transition
functions including O(m,m;Z) transformations arise in string theory as T-folds, so that
this is a useful generalisation. Such extended geometries with O(d,d) structure will be
referred to as Type I extended geometries, to distinguish them from the type II and type
M geometries with E-series structure groups to be introduced later. It will also be natural
to introduce an extended spin bundle S with structure group Pin(d,d) or Spin(d,d), when
there is no obstruction to such a double cover of E.

The bundle E can be reduced to one that has structure group in the maximal compact
subgroup O(d) x O(d) or S(O(d) x O(d)). This is equivalent to choosing a sub-bundle E* on
which 7 is positive definite, so that E = E* @ E~ where £~ is the orthogonal complement
of E*, so that 7 is negative definite on E~. An SO(d,d) bundle E admits a Spin(d,d)
structure only if the second Stiefel-Whitney classes of ET agree, wy(E1) = wy(E~) M, ES);
this is automatically satisfied for T'@® T, even in the case in which M is not spin, i.e. even

The reduction of E to ET defines a positive definite generalised metric

H o= nlps —nlp (3.1)

Choosing a generalised metric is equivalent to choosing a reduction of the bundle, and the
space of such reductions at a point x € M is
O(d,d) or SO(d,d)
O(d) x O(d) S(O(d) x SO(d))

Let V* be the projections V* : E — E*. Then

- <5i ) (3.3)

maps F — ET @ E~ and is a representative of the coset O(d, d)/O(d) x O(d). Introducing
indices @ = 1,...,d labelling a basis for ET transforming under one O(d) factor and

(3.2)

indices a’ = 1,...,d labelling a basis for E~ transforming under the other O(d) factor, V*
is represented by a d x 2d matrix V*; and V™ is represented by a d x 2d matrix V. so

that
Ver
VA = N 3.4
I <V“1> (3.4)

is a vielbein transforming from a general basis labelled by I to a basis for E+ @ E~ labelled
by A = (a,a’). The generalised metric is then

H=V'V (3.5)



with components

Hig=06aVAVE; (3.6)

The generalised metric is not constant over M in general, so H(z) (where z € M) defines
amap H : M — O(d,d)/O(d) x O(d). As well as the manifest covariance under O(d, d),
there is a symmetry under local O(d) x O(d) transformations, given by functions k(z),
with k: M — O(d) x O(d). In particular, the vielbein V(z) transforms as

V(z) — k(z)V(x)g (3.7)

under a local O(d) x O(d) transformation k(z) and rigid transformation g € O(d, d). The
local O(d) x O(d) symmetry can be used to choose a triangular gauge for V over some

neighbourghood of M, so that
el 0
— 3.8
v (—elB el> ’ (3.8)

for some d-bein e;* and anti-symmetric d x d matrix B;;. Then

G- BG'B BG™!
H=V"V= 3.9
( _G—lB G—l > ( )
where the metric G = ele, i.c.
Gz‘j = ei“ejbéab (3.10)
As a result, the fibre metric H(z) is parameterized by a d x d matrix E(x) given by
Eij = Gij + Bij (3.11)

3.2 General extended geometries

The above structure generalises to arbitrary vector bundles with non-compact structure
group G. Consider a vector bundle £ over a manifold M with projection 7 : £ — M, fibre
F and structure group G. For an open cover {U,} of M, 771 (U,) ~ U, x F and a point
in 771(U,) can be represented by (x4, Vs) where zo € Uy, Vo € F. The group G acts
as (z,V) — (x,gV), where gV = R(g)V and R(g) is the action of ¢ € G on F in some
representation R. Over the overlap U, N Ug, the coordinates in 7 YUy N Ug) are related
by

Va = gasl(@)Vi (3.12)

where the transition function gog(x) is a map gag : UoNUg — G acting on F' (and satisfying
the usual consistency conditions).
For any maps V,, : U, — G, the transition functions

hozﬁ = Vagozﬁvlgl (313)

define a bundle equivalent to £. If G is non-compact with maximal compact subgroup H,
then &€ can be reduced to a bundle £ with structure group H. This means that the maps

,10,



Vo : Uy — G can be chosen so that the transition functions (B.13) are in H, hop € H. For
any such maps V,, the maps V!, = h,V, will also give transition functions in H, provided
that h, are maps hy : Uy, — H. Then a reduction corresponds to an equivalence class
of maps V, identified under the left action of maps h, : Uy, — H, V, ~ hoV,. The
equivalence classes then correspond to maps from U, to the left coset G/H. From (B.13),
the maps V, have the patching conditions

Vo = hagVsgas (3.14)
There is then a map
V:E—=E, Vi(2a,Va) = (Ta, Va) = (Ta, Va(ra))
where the V,, = V,(2,)V, have patching conditions at x
Vo = hap(z)V3 (3.15)

with transition functions h,g € H, so that £ is indeed a vector bundle with structure group
H.

Suppose that the representation R has an H-invariant positive definite metric, giving
a positive definite fibre metric H(5,5) for sections 5(x) of £, and this in turn defines a

positive definite fibre metric for sections s(z) of £, via
H(s,s) = H(Vs, Vs) (3.16)

For example, if H is an orthogonal group with h'h = 1 where h! is the transpose, then
H(Vs,Vs) = 5'5 and ‘H(s,s) = s'Hs where the matrix H is given by

H =V (3.17)

For G = O(d,d), this gives the O(d) x O(d) invariant metric (R.1§). Similarly, for unitary
groups with hth =1,
H=VV (3.18)

There is a natural action of H gauge transformations, i.e. of maps hq : U, — H under
which

Vo) = ha()Va, (z,Vy) = (2, ha(z)Vy), hap — hahaphy' (3.19)

We will be interested in gauge equivalence classes identified under this action. In particular,
the metric H depends only on the equivalence class, and so is specified by a map M — G/H,
or more generally a section of a bundle with fibre G/H.

Finally, for many cases of interest, H has a natural double cover ]TI and so given the
extended tangent bundle £ with H-structure, it is natural to seek an extended spln bundle
& with structure group H that projects onto £ under the double cover map p : H — H.
There is in general a topological obstruction for such a double cover, given by the 2nd
Stiefel-Whitney class w2(€) = H?(E,Z5). Given a lift of the transition functions hag to

— 11 —



Eaﬁ €cH , the Zo Cech cohomology class is represented by the %agﬁmﬁya = +1 in triple
overlaps, and it is necessary to be able to choose the h,g so that this is +1 in all triple

overlaps. A necessary and sufficient condition for this is that w9 (&) = 0.
In the following sections, examples of this construction with G = F,, and H = H,, will
be explored.

4. M-geometries

In this section, the generalisation of generalised geometry suggested by M-theory on an
orientible n-dimensional manifold M are investigated, in which T"® T™ with a natural
action of SO(n,n) is replaced by & ~ T @ A?T* & ... with a natural action of FE,, and
the 2-form symmetry of B-shifts is generalised to one of 3-form shifts. The structure
changes from dimension to dimension, so each will be considered in turn. The full explicit
transformations will be given only for n = 4,7; those for n = 5,6 follow by truncation of
the n = 7 case.

4.1 n =4, E; = SL(5,R)

Consider first the case of a four manifold, with E4 = SL(5,R). The bundle T'® T* is
replaced with T ® A?T* with 10-dimensional fibres transforming in the 44 6 representation
of SL(4,R). A section is then a formal sum

U=v+p
of a vector v and a 2-form p which can be thought of as an extended vector with 10
components U! (I =1,...,10)
I v'
U’ = , (4.1)
Pij
where i,j = 1,...,4 and p;; = —pj.
There is an action of SL(5,R) on T@®A2T*, as follows. First, there is the natural action
of SL(4, R) acting separately on the vector v and 2-form p. There is an action of a 3-form

© € A3T* sending
v+p—v+p+ 1,0 (4.2)

and the action of a tri-vector 3 € A3T with components 3% sending
vtpr= vt ptS

(with (:p3)" = pjx*). These are natural generalisations of (27), (). Finally, the
group closes on a scaling under which

v+ p— v+ ap (4.3)
with o € R, # 0. The adjoint of SL(5,R) decomposes as

24=15+1+4+4
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under SL(4, R), corresponding to these four classes of transformation. The fibres then trans-
form in the 10-dimensional representation of SL(5,R) labelled by the index I =1,...,10.

An SL(5,R) bundle £ can be reduced to an SO(5) bundle £, and the reduction is
equivalent to choosing an element V of the coset SL(5,R)/SO(5), or equivalently a positive
definite fibre metric H, for each point x € M. This can be represented by a matrix
function VA7(x) on some patch U € M where A = 1,...,10 labels the 10-dimensional
representation of SO(5). Given a metric G;; and orientation on M, the tangent bundle
becomes an SO(4) bundle whose structure group is a subgroup of the SO(5), and the
10-dimensional representation decomposes as 10 = 4 + 6 under SO(4) C SO(5).

The coset SL(5,R)/SO(5) is 14-dimensional and can be parameterised by a symmetric
matrix Gy; transforming in the 10 of SO(4) C SO(5) and a 3-form Cjj;, transforming as a
4 of SO(4). At each point x € M, the vielbein V(z) transforms as

V(z) — k(z)V(x)g (4.4)

under a local SO(5) transformation k(x) and rigid transformation g € SL(5, R). It is useful
to introduce a frame field e%; for T M, so that G;; = 5abe“iebj with tangent space indices
a,b... transforming under SO(4), and the vielbein e%; is used to convert indices 7, ...
to a,b..., so that e.g. v* = e%v’. The local SO(5) symmetry can be used to choose a

triangular gauge for V over some neighbourhood of M, so that

V= ¢"s 0 (4.5)
—\ ey elley) .

It maps U given by ([£1) to

gA— [ ) vt = v 4.6
<uab> Y ! Pab — Cabcvc ( )

An SO(5)-invariant metric on sections of & is given by
- — A= 1
H(U,U) = HapUAU® = §puub + iaabacdumubd (4.7)

Then a positive definite generalised metric H on € can be defined by (B.16) giving the norm

of (1)) as

HU,U) = G(v,v) + G*(p — 1,C, p — 1,C) (4.8)

where G* is the norm on 2-forms constructed from G = e’e. In terms of components, this
is 1
HU,U) = Gijv'v? + 5G“fc:ﬂ(pij — Cijm0™) (prt — Cranv™) (4.9)

so that the metric is represented by the matrix H = V*HV which has the form

G +icelgtc —togG! )
H= 2 L P (4.10)
( —%G lg-1c %G g1
The action of the 3-form transformation on V and H gives
C—C+0 (4.11)

so that the three-form transformation shifts the three-form field C.

,13,



4.2 n =5, E5 = Spin(5,5)

Consider next the case of a five-manifold, with E5 = Spin(5,5). In this case, in addition
to the 2-form, a 5-form is added to the fibres. The bundle T'® T™* is then replaced with
T ® A?T* @ A°T* with 16-dimensional fibres transforming in the 5+ 10’ + 1 representation
of SL(5,R). A section is then a formal sum

U=v+p+o

of a vector v, a 2-form p and a 5-form o. Given a volume form € € A®T* and its dual
€ € AST with 1ze = 1, this is equivalent to to the sum of a O-form *o = 1z0, a 2-form p
and a 4-form *v = 1€, and so there is a natural action of Spin(5,5) on this under which
the fibres transform as 16T, the positive chirality spinor representation. The adjoint of
Spin(5,5) decomposes under SL(5,R) as

45=24+1+10+ 10

consisting of the natural action of SL(5,R) on tangent vectors and forms on a 5-fold,
a scaling transformation and the action of a 3-form ©;;; and a 3-vector (% so that
this is very similar to the n = 4 case. The coset space Spin(5,5)/Hs where Hs =
(Spin(5) x Spin(5))/Z2 has dimension 25 and can be parameterised by a symmetric matrix
Gi; and 3-form Cjji. Then as for n = 4, there is a generalised metric H(x) and vielbein V
parameterised by a metric Gj;(x) and 3-form Cjji(z) on M, with the 3-form transforming
as C'— C+ 0.

4.3 n =06, Eg

As for n = 5, the bundle T @ T* is replaced with 7" @ A?T* @ APT* with 27-dimensional
fibres transforming in the 6 4+ 15 + 6 representation of SL(6,R), with a natural action of
Eg acting in the 27 representation. A section is a 27-dimensional vector decomposing as a
formal sum

U=v+p+o

of a vector v, a 2-form p and a 5-form o. The adjoint of Fg decomposes under SL(6,R) as
78=354+14+20+20+1+1

consisting of the natural action of SL(5,R) on tangent vectors and forms on a 5-fold, a
scaling transformation, the action of a 3-form ©;;; and a 3-vector (3% as before, but now
in addition there is the action of a 6-form © € AST* and a 6-vector B € AST; these are
singlets, but regarding them as 6-forms and 6-vectors is suggested by the fact that 6-forms
and 6-vectors arise for n = 7. The coset Eg/Hg where Hg = Sp(4)/Z2 is 42-dimensional
and can be parameterised by a symmetric matrix G;;, a 3-form Cj;; and a 6-form éil...z‘e
(dual to a scalar in 6 dimensions). Then the generalised metric H(z) and vielbein V are
parameterised by a metric G;;(x), 3-form Cjji(x) and a 6-form Ci,..is(x) on M. The group
Es has a maximal subgroup SL(6,R) x SL(2, R) under which

27 — (6,2) + (15,1), 78 — (35,1) + (20,2) + (1, 3)
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For n = 7, as will be seen below, the bundle T @ T* is replaced with T ® A?T* &
APT* @ AT, suggesting that for n = 6 one also consider a generalisation in which AT is
added to the generalised tangent bundle. Then A®T is invariant under Eg and SL(6, R), so
that Eg acts on T ® A?T* @ A°T* @ A®T in the 27 + 1 representation. This extra singlet
corresponds to an extra charge that is allowed by the supersymmetry algebra [i9). It is not
known whether states carrying this charge arise in M-theory, but if they do, their presence
would have dramatic implications [p(].

4.4 n= 7, E7
For n = 7, the bundle T' @ T™ is replaced with

T @ AN°T* @ A°T* @ AST

with 56-dimensional fibres transforming in the 7+ 21’ + 21 + 7’ representation of SL(7,R),
with a natural action of F; acting in the 56 representation. F7 has a maximal SL(8, R

subgroup, and these SL(7,R) representations combine into the 28 + 28" of SL(8,R). A
section is a 56-dimensional vector decomposing as a formal sum

U=v+p+o+71

of a vector v, a 2-form p, a 5-form o and a 6-vector 7.
The adjoint of E7 decomposes under SL(7,R) as

133 =48+1+35+35'+7+7

and so in addition to the standard action of SL(7, [R) and a scaling, there is the action of
a 3-form © € A3T*, a 3-vector 3 € A3T, a 6-form © € AST* and a 6-vector B € AST. The
action of the 6-form and 6-vector combine with the action of SL(7,R) and the scaling to
generate an SL(8,R) subgroup. The coset E7/H7 where H7 = SU(8)/Z5 is 70-dimensional
and can be parameterised by a symmetric matrix Gy;, a 3-form Cjj;, and a 6-form C,l___ZG
(70 = 28 4 35 + 7). Then the generalised metric H(x) and vielbein V is specified in terms
of a metric G;j(x), 3-form Cjji(x) and a 6-form Ciy..ig(z) on M.

The action of E7 can be understood as follows. Consider the 8-manifold N = M x S*
with the natural U(1) action generated by a vector k tangent to S'; let k be the dual
one-form on S1, with k(k) = 1. If  ~ 0 + 2r is the S* coordinate, then k = §/86 and
k=df. A 2-form ¢ on N is specified by a 1-form ¢1 = 1¢ and a 2-form ¢o = ¢ — kA L@
with g = 0, and if ¢ is U(1) invariant (i.e. the Lie derivative L£;¢ = 0) these pull-back
to a 1-form ¢} and 2-form ¢, on M. We can then define a 2-form and 6-vector on M
by p = ¢, and 7 = x¢}| = Ly € where € is the 7-vector on M dual to the volume form e.
The natural action of SL(8,R) on A?T*N gives the action of SL(8,R) on ¢ and hence on
p, T which transform according to the 28’ representation. Similarly, an invariant bi-vector
X € A’°TN gives a vector xj € TM and a bi-vector x5 € A2T'M, and these define a vector
v = x} and a 5-form ¢ = *x, = t,,e. The action of SL(8,R) on A?’T'N then gives the

X2
SL(8,R) transformations of v, o which combine into the 28 representation.

,15,



The remaining generators of F7; combine into a 4-form on N, ¥ € A*T*N. The
infinitesimal action U(X) of ¥ on ¢ + x € A2T*N @ A2TN is

UX):p+x— o+ X+, Z+is%X (4.12)

where *¥ is the dual on N, *X = i5(k A€) € A*TN. The 4-form ¥ gives a 3-form
© and 4-form 3 on M, and the 4-form 3 dualises to a 3-vector 3 € AT M (given by
B = (' = 13¢€). Then the transformation ([.1g) gives the infinitesimal transformation of
U = v+ p+ o+ 7 under the action of the 3-form © and 3-vector 3. The corresponding
transformations under £, in dimensions n < 7 follow by truncation.

The vielbein V is constructed following [@], and can be parameterised in terms of Gj;,
the 3-form Cjj;, and a vector Bi = éeﬂl“'iﬁ@l_ie in the factorised form

V = afexp[U(C A k)] (4.13)

Here U(C A k) is the map ([.19) with

YX=CAk
This ¥ has components Y7557, where I = 1,...,8 label coordinates on N which satisfy
) S LN (2) MV = 0 (4.14)
and as a result U(C A k) is nilpotent,
[U(CAR)*=0

Then the exponential becomes the polynomial
1 2 1 3
explU(C NEk)] = 1+U—|—§U —|—6U (4.15)

and so V is cubic in the 3-form C. The «, 3 are SL(8,R) transformations acting in the
28 + 28’ representation. Their action in the fundamental 8-dimensional representation are
given by 8 x 8 matrices of 5, 31 ; which take the (7 + 1) x (7 + 1) block form

o= (O 0) 5= (‘5:;‘ ff) (1.16)

where e%; is a vielbein for M with e“iebjéab = G and e = det(e;*) = (/det(Gy;). The

generalised metric is then given by

H=VV

and is polynomial in both C' and C = *B.
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n E, R SL(n,R) reps £

2 SL(2,R) x R 241 2+1 E~Tea AT

3 | SL(3,R) x SL(2,R)  (3,2) 3+3 E~Td AT

4 SL(5,R) 10 446 E~Td AT

5 Spin(5,5) 16 5410+ 1 E~T®NT* AT

6 Eg(6) 27(+1) 6+ 15 +6(+1) & ~T @ A*T* @ AST*(@AST)
7 Ex 56 T4+21"+214+7 E~T@ANT*OANT* QAT

Table 2: The bundle £ over an n-dimensional manifold M has fibre in the representation R of
E441. The decomposition into SL(n, R) representations gives a corresponding decomposition of £.

n E, dim(E,) dim(E,/H,) Coset moduli
2|  SL(ZR) xR 4 3 G

3| SL(3,R) x SL(2,R) 11 7 =6+1 G, Cy

4 SL(5,R) 24 14 =10+4 G, Cy

5 Spin(5, 5) 45 95 =15+10 G, Cy

6 Eg(6) 78 42=2142041 @, Cs,Cs

7 Jo 133 70=28435+7  G,Cs,Cs

Table 3: The U-duality groups E,,, the dimensions of the cosets F, /H, and the parameterisation
of the cosets in terms of a metric G, a 3-form C3 and a 6-form Cg.

5. Type M extended tangent bundles and extended spin bundles

The bundles identified in the last section are summarised in table 2, with a natural action
of E,, on the fibres in the representation R. The coset E,,/H,, is parameterised by the fields
given in table 3.

As discussed in section B, T @ T* strictly speaking has structure group GL(n,R), and
this can be extended by twisting with a gerbe to a generalised tangent bundle with structure
group GL(n,R) x Q%< where Q% is the bundle of closed 2-forms, and this preserves the
Courant bracket. In section B.1], this was generalised further to type I extended tangent
bundles with structure group O(n,n). This will not preserve the Courant bracket in general,
but such structures are relevant for non-geometric backgrounds in string theory.

In the same way, the bundle

T & A>T @ AST* @ AST

has structure group GL(n,R). This can again be twisted with a gerbe, in a similar way to
section P.2
Consider first T@ A%T™*. The 3-form C can be taken to be a connection with transition

functions

(5C)aﬁ = Clg — Ca = d)\ag
for some 2-forms A, on the overlaps U, N Ug with consistency conditions

(5>\)a66 = Aaﬁ + )\Bq/ + )"Ya = dl-ﬁag,y
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for 1-forms kng on triple overlaps U, N Ug N U,. These satisty

(6K)aprs = Kagy + Kigys + Fyda + Ksas = o 509a6ys (5.1)

for some maps gagys : Ua N Ug N U, N Us — U(1) from quadruple overlaps to U(1), which
in turn satisfy

9aBys9ByseGvsca9seaBeay = 1 (52)

on quintuple overlaps. (This could be generalised to allow

Kagy T Kpys + Kysa + Koap = ddapys (5.3)

for some O-forms ¢.g,6 on quadruple overlaps satisfying a consistency condition
(00)aBysen = Capysen O quintuple overlaps for constants cqgysen satisfying (9¢)agysens = 0.

The A, can be used to define a bundle £ over M by identifying T'® A%T* on U, with
T @& A%T* on U by the C-field action v + p + v + p + i,dAn3. The fibre over a point x
in M is again T, © AT}, but the transition functions are now in GL(d,R) x Q> where
03 is the bundle of closed 3-forms. This preserves the Courant bracket on T' @ A2T™*.

This extends to T A?T* S APT*® AT, with the 6-form C a connection with transition
functions

(0C)ap = Cp — Co = dAag

for some 5-forms Xaﬁ on the overlaps U,NUjg satisfying similar consistency conditions to the
above. The group E, has a subgroup containing GL(n,R) and transformations generated
by a 3-form and (for n = 6,7) a 6-form, and the fibres

U=v+p+o+T

can be patched together on overlaps using such transformations with closed 3-form and 6-
form generators. The structure group is then generated by GL(n,R), Q3¢ and Q% where
QP is the bundle of closed p-forms. The action of the 3-forms and 6-forms generates
a non-trivial algebra; if d3(A) is the transformation generated by a closed 3-form A and
J6(X) is the transformation generated by a closed 6-form ¥, then these satisfy an algebra
A whose only non-trivial commutation relation is [R

[05(A), d3(A")] = d6(A A A')] (5-4)

Then the structure group is GL(n,R) x A.

To incorporate non-geometric backgrounds, the bundle T' @ A2T* @ A°T* @ AST with
transition functions in GL(n,R) (or its generalisation twisted by gerbes with structure
group GL(n,R) x (23 @ Qb)) is generalised to a vector bundle £ over the n-dimensional
oriented manifold M with structure group F, and fibres in the representation R given
in table [ for each value of n. This will be referred to as an extended tangent bundle.
In general, the transition functions will mix the metric G with the gauge fields C3, Cg, so
that these will be defined locally in patches through the choice of V,, but will not patch
together to form tensor fields or gerbe connections.
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n E, H, i,
2 SL(2,R) x R SO(2) Spin(2)

3 | SL(3,R) x SL(2,R) SO(3) x SO(2) Spin(3) x Spin(2)
4 SL(5,R) SO(5) Spin(5)

5 Spin(5,5) (Sp(2) x Sp(2))/Z, Sp(2) x Sp(2)

6 Eg(6) Sp(4)/Z, Sp(4)

7 fou SU(8)/Zs SU(®)

8 FEg(s) Spin(16)/Z Spin(16)

Table 4: The U-duality groups E,,, their maximal compact subgroups H,, and the double covers
H,, of H,,.

As discussed in section B.9, the extended tangent bundle £ with structure group E,
can be reduced to a bundle £ with structure group H,,, the maximal compact subgroup of
E,, given in table 1, and the reduction is equivalent to a choice of vielbein V. The groups
H,, each have a natural double cover ﬁln given in table 4. The various Zs factors and
double cover maps are given in BJ]. An M-type extended spin bundle & is a bundle over
M that projects onto £ under the projection p : H, — H,, and a necessary and sufficient

condition for this is that wa(€) = 0.

6. Type II geometries

In this section, the generalisations of generalised geometry suggested by type II string
theory on a d-dimensional manifold M are studied, in which T°® T™ with a natural action
of SO(d,d) is replaced by £ ~ T & T* ® ST @ ...
positive chirality spin bundle S is used for type IIA string backgrounds and the negative

with a natural action of E4z1q. The

chirality spin bundle S~ is used for type IIB string backgrounds, so £ will be referred to
as a type ITA geometry and £~ will be referred to as a type 1IB geometry. For a given
embedding SO(d,d) C E441, the two choices of chirality give two distinct representations
R* of FEg4.1. Equivalently, one could fix the representation R of F;1; and choose two
different embeddings SO(d, d) C E,4,; to obtain two decompositions &€ ~ TST*®ST®. ...

6.1 d =3, By = SL(5,R)

Consider first the case d = 3, with Ey = SL(5,R). For &', we take the fibres to be
in the 10 representation. Under the SL(4,R) = Spin(3,3) subgroup, the 10 of SL(5,R)
decomposes as 10 — 6 + 4, corresponding to the vector and negative chirality spinor
representations of Spin(3,3). Under SL(3,R) C Spin(3,3), the 6 decomposes into the
3+ 3, and the 4 decomposes into the 1 + 3. Then locally the fibres of £t decompose into
T @ T*®AT* @ A>T*. A section is then a formal sum

U=v+E&+po+p2
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d Egiq R Spin(d, d) reps &

2 | SL(3,R) x SL(2,R)  (3,2) 4+ 2% E~TOT*®S*

3 SL(5,R) 10 6 +4F E~TOT*®S*

4 Spin(5,5) 16 8+ 8+ E~TOT ®S*

5 Eg(s) 27(+1) 10+ 1(+1) +4F E~TOT* O AT (DAT) @ S*
6 Er() 56 124124325 E~TOT @ NTaANT 0 S5*

Table 5: The bundle £ over a d-dimensional manifold M has fibre in the representation R of Eg4;.
The decomposition into Spin(d, d) representations gives a corresponding decomposition of £. The
upper sign is for the ITA geometry and the lower one for IIB geometry.

of a vector v, a 1-form £, a O-form py and a 2-form py. The O-form py and 2-form poy
combine to form a positive chirality spinor of Spin(3,3), so that U is the sum of a vector
V =wv+ ¢ and a spinor pt = pg + py of Spin(3,3).

Similarly, for £, we take the fibres to be in the dual 10’ representation, decomposing
as 10/ — 6 + 4’ under SL(4,R) = Spin(3,3), and further decomposing into SL(3,R)
representations gives 3 + 3’ +1 + 3’. Then a section is a formal sum

U=v+&{+p1+p3
of a vector v, a 1-form &, a 1-form p; and a 3-form p3, in
ToT* oT o N3 T*  ~ToT ® S~

The 1-form p; and 3-form p3 combine to form a negative chirality spinor of Spin(3,3), so
that U is the sum of a vector V= v + £ and a spinor p~ = p1 + ps3 of Spin(3,3).
The adjoint of SL(5,R) decomposes under Spin(3,3) as

24 =15+1+4" +4~ (6.1)

with two spinor generators ©F € S*. In addition to the standard action of Spin(3,3) and a
scaling transformation, there are two extra generators in spin representations of Spin(3,3)
that transform T'@ T* and S into one another. The coset space SL(5,R)/SO(5) is 14-
dimensional and can be parameterised by a metric G;j, 2-form B;; and scalar ®, together
with either even forms Cp, Co combining into a positive chirality spinor C*, or odd forms
C1, (3 combining into a positive chirality spinor C'~. These two possibilities correspond
to two gauge choices for the local SO(5). The parametrisation in terms of C* is useful for
the IIA string and that in terms of C~ for the IIB string. The generators ©F act as shifts
of C*,
C*— C* 4+ 0F

6.2 General d <6

A similar structure applies for other d < 6, as summarised in table 3. For d = 2,3,4,
T & T* is extended to
EE=ToT 05"
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with a natural action of Ey4, ;. For example, for d = 4, the fibre is in the positive chirality
spinor representation 167 of F5 = Spin(5,5) for the ITA geometry. Under the natural
embedding of Spin(4,4) C Spin(5,5), the 16T decomposes into the spinor representations
8t + 8 of Spin(4,4). This is related by Spin(4,4) triality to an embedding in which it
decomposes into a vector and spinor 8, + 8%, and this is the embedding used here, with
EXV ~T@®T*® ST. For type IIB, &€ ~ T @ T* ® S~, and this can either be regarded
as coming from the same embedding of Spin(4,4) C Spin(5,5) but with the fibres in the
negative chirality spinor representation 16~ of Spin(5,5), or as arising from keeping the
same 16T representation but choosing a different embedding of Spin(4,4) C Spin(5,5)
(related by triality to the other two embeddings discussed above).
For d =5,6, T @ T* is extended to

E~TOT O AT ANT @S+

transforming under E4, with AST corresponding to NS 5-brane charge and A°T* corre-
sponding to KK monopole charge. For d = 5, this is the reducible 27 + 1 representation,
and the APT factor can be removed to leave the 27. For d = 6, E; has a maximal sub-
group SO(6,6) x SL(2,R), and under this the 56 decomposes as 56 = (12,2) + (32,1). As
NT @ NT*  ~T*& T for d =6,

E~TOT ®TOT ®S*

and T @ T* forms an SL(2,R) doublet with A>T @ A®T*, with both in the 12-dimensional
vector representation of SO(6,6).

The decomposition of the adjoint of F4y;1 into Spin(d,d) representations is given in
table 5. In each case there are two spinor generators, which are of the same chirality for
d even and opposite chiralities for odd d. Convenient parameterisations of the coset space
E411/Hgq are also given. For each d, these are represented by

G,B,B,®,CF

including the d? parameters assembled into the metric G and 2-form B, a scalar ®, and a 6-
form B which only contributes for d = 6, corresponding to a 6-form field dual to the 2-form
B. In addition, for the ITA theory there is a negative chirality spinor C'~ corresponding to
a set of odd forms C~ ~ (', Cs, (5, while for the IIB theory there is a positive chirality
spinor C'~ corresponding to a set of even forms CT ~ Cy, Co, Cy, Cp.

6.3 Reduction of M-geometries to type IIA geometries

Consider an M-geometry on an n-dimensional manifold M which is a circle bundle over a
d = n — 1-dimensional manifold M, with n < 7. As in subsection .4, each p-form on M
that is invariant under the circle action projects to a p-form and a p — 1-form on M, and
each invariant p-vector on H projects to a p-vector and a p — 1-vector on M. Thus

APTM|yay ~ APTM & AP 'TM,  APT*M|yqay ~ APT*M & AP~ T* M (6.2)
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d Eqq Adjoint  Spin(d,d) decomposition Eg.1/Hg1 parameterisation
2[SL(3,R) x SL(Z,R) 8+3 6+1—+2F +27 T=6-+1+2F

3 SL(5,R) 24 154 1+4F +4- 14=9+1+447

4 Spin(5,5) 45 28 4 1+ 8F 4 8F 25 =16+ 1 + 8F

5 EG(G) 78 454+ 14167 4+ 16~ 42 =25+1+ 16T

6 E7(7) 133 66 +1+1+1-+32F 4+ 32F 7T0=36+1+1+32F

Table 6: The bundle £ over a d-dimensional manifold M has fibre in the representation R of Eg4;.
The decomposition into Spin(d, d) representations gives a corresponding decomposition of €.

The M-geometry on M is based on
T & A*T* @ A°T* @ A°T
For invariant forms and multi-vectors, this reduces to the following structure on M:
ToT e NTOANT AT O N’ T o M T* AT | ~ TOT* AT S AT o ST (6.3)

This uses that for d = 6, ASTM ~ AST*M, while for d < 6, ASTM does not arise.

The generalised metric on M is parameterised by a metric G, a 3-form C and a
6-form C. If these are invariant under the circle action, then the 3-form projects to a
2-form B and 3-form (3, the 6-form C gives a 6-form B and a 5-form C5, while the
metric projects to a metric Gps, 1-form Cy and scalar & on M. In this way the M-
geometry generalised metric H(G, C, 6) on M gives rise to the ITA-geometry generalised
metric H(Gyy, B, E, o, C4,C5,C5) depending on the ITA-geometry fields on a manifold of
dimension d < 6:

{Gn,B,B,®,Cy,C5,C5} ~ {Gpr, B,B,®,5} (6.4)

The explicit parameterisation of the M-geometry generalised metric H on a 7-fold M given
in subsection .4 then gives that of the type-IIA generalised metric on a 6-fold M, and the
parameterisation of the type-IIA generalised metric for d < 6 follows by truncation.

7. Type II extended tangent bundles and extended spin bundles
The type II geometries have extended tangent spaces of the form & ~ T @ T* @ AT or
E~T®T & AT AT @ AL

where A* are the bundles of even or odd forms, and these have structure group GL(d,R).
The coset space is parameterised by the fields G, B, B ,®, CF. This structure can be twisted
by gerbes by allowing the p-form fields to be gauge fields with transition functions that
are closed p-forms. The action of E;y1 includes transformations generated by p-forms for
the same values of p that act as shifts of the p-form gauge fields and so can be used in
the transition functions in the same way as in section 5. As in section 5, this can be
generalised to allow general vector bundles with structure group Ey4; and with fibres in
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the representations R* given in table fl. Again, this will give a non-geometric construction
in general, as the transition functions will mix the metric with the various gauge fields.
The type II extended tangent bundle £;41 over a d-manifold M with structure group Eg41
reduces to a bundle £ with compact structure group Hy, 1, and a type II generalised spin-
bundle is a bundle £ with structure group fIdH, the double cover of Hyy 1 from table 4,
that projects onto £ under the double cover map.

8. Special structures, generalised holonomy and supersymmetry

In Riemannian geometry, interesting classes of geometry are characterised by specifying
the holonomy of the Levi-Civita connection. In n dimensions, a general space will have
holonomy O(n), but a Kahler space has holonomy U(n/2) (for n even), a Calabi-Yau space
has holonomy SU(n/2) (for n even), and special holonomies Gy and Spin(7) can arise for
n = 7,8 respectively. There is an intimate relation between the holonomy and the number
of covariantly constant spinors, and hence the number of supersymmetries preserved when
the geometry is used in a supergravity solution.

In generalised geometry, interesting classes are given by generalised complex [[], gen-
eralised Kahler [[l] and generalised Calabi-Yau geometries []], and these too are related to
supersymmetry [{-[R0.

In previous sections, extended tangent and spin bundles of types III and M were
discussed, and geometries specified by a metric G and various antisymmetric tensor fields.
In this section, connections on the extended spin bundle that are constructed from this
geometrical data will be discussed, and interesting restrictions on the geometry defined by
restricting the holonomies of these connections.

8.1 Generalised holonomy in generalised geometry and type I extended geom-
etry

As was seen in section B.|, a type I extended tangent bundle is a bundle E over a d-
dimensional space M with structure group O(d,d) (or SO(d, d)), and reduces to a bundle
ET @ E~ with structure group O(d) x O(d) or S(O(d) x O(d)), and each sub-bundle is
isomorphic to the tangent bundle, E* ~ T [H].

Consider first the case in which the extended geometry is a generalised geometry, which
will be the case if the structure group of F is in GL(d,R) x Q%< so that for ET @ E~ it
is in the diagonal O(d) C O(d) x O(d). A generalised metric corresponds to a metric G
and closed 3-form H on M, with H = dB for some 2-form gerbe connection B. Let V*
be the metric connection on T given by the Levi-Civita connection plus torsion :I:%G_lﬂ ,
VE =V =+ 3G H, so that

, 1
Vil = Vil + §kavk (8.1)

where Hljk = H;;,GY.
The holonomies of these connections, H* = H(V¥), are in O(d), H* C O(d). If

d = 2m and HT C U(m), then there is an almost complex structure J* that is parallel
with respect to V*, VTJT = 0. Similarly, if H~ C U(m) there is an almost complex
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(p,q) H H™ dimension
(1,1) | O@d)  0O(d) d
(2,1) | U(m) O(2m) 2m
(2,2) | U(m) U(m) 2m
(4,1) | Sp(M) O@4M)  4M
(4,2) | Sp(M) U@M)  4M
(4.9) | Sp(M) Sp(M)  4M

Table 7: The holonomies H', H~ giving p— 1 complex structures J* and g — 1 complex structures
J~ for manifolds of various dimension, which allow the construction of sigma-models with (p, q)
supersymimetry.

structure J~ with V~J~ = 0. The metric is hermitian with respect to each structure. An
interesting case is that in which H* C U(m), and this gives precisely the geometry needed
to define a sigma-model with (2,2) world-sheet supersymmetry [I]. The superalgebra
closes off-shell if both J* are integrable, and this gives precisely the bihermitian geometry
of [E5] which has been termed generalised Kahler geometry in [H].

The isomorphism E* ~ T then gives corresponding connections V* on E*, and the
connection with supersymmetry suggests using the connection V* on E* and the connec-
tion V~ on E~. Then the almost complex structures J* on T correspond to generalised
almost complex structures J;, J> on E, and if J* are integrable, then J;, J5 are Courant-
integrable and so are generalised almost complex structures [[f.

There is a similar story for other holonomy groups [, [iq]. In table i, the holonomy
groups ‘H* that give sigma-models with (p,q) supersymmetry are given. (The cases (g, p)
are given by interchanging H™, H™.)

In each case, there are p — 1 almost complex structures J}, a = 1,...,p — 1 satisfying
V*HJF =0, and ¢—1 almost complex structures J,, o/ =1,...,¢—1 satisfying V=J_, = 0.
If there are three J* or J—, they satisfy the quaternion algebra and so constitute an
almost quaternionic structure. Each pair (J;, J_,) defines two generalised almost complex
structures 7', 75 as in [l], giving 2(p—1)(g—1) generalised almost complex structures.
For the (4,2) case, there are 343 generalised almost complex structures J*, J5* satisfying

an algebra with e.g.

(72, I = 1780, T3] = @D gyt (8:2)

where IIF is the projection IT* : E — E*. For the (4,4) case, there are 9+9 generalised
almost complex structures jl‘ml, jéml. If all the almost complex structures are integrable,
then the space is generalised Kahler if p > 2 and ¢ > 2. It seems natural to refer to the
(4,4) case [AF] as generalised hyperkahler, as in [4], Fg].

The connections V* on T lift to connections on the spin bundle (assuming M is spin),
with

~ 1 )
Via=Va+ gﬂijkrfka (8.3)

)
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for spinors «, where T = TlUT7] and T satisfy the Clifford algebra
(T, 19} = 2G1 (8.4)

The holonomies H* of V= are in Spin(d) and determine the number of covariantly constant
spinors oF satisfying V¥a* = 0 [id]. For general holonomy H* = Spin(d), there are no
covariantly constant spinors, while if d = 2m and HT C SU(m), then there are at least two
satisfying V*tat = 0. The relation between holonomy and the number of parallel spinors
is well-known: for example, for d = 8, there will be 1,2,3 or 4 such spinors for holonomies
Spin(7),SU(4),Sp(2),SU(2) x SU(2) respectively, while for d = 7, there is one such spinor
for holonomy Gs.

Similar results apply for type I extended geometries. A bundle E with O(d, d) structure
reduces to a bundle EtT @& E~ with structure group O(d) x O(d). In special cases, this will
be reducible, and in this extended case, the structure group of E* need not be the same as
that for E~. The connections with torsion V* again give connections on E*, and we choose
the connection V' on ET and V™ on E~. Again, there are interesting geometries with
restrictions on the holonomies H*. For d = 2m, bundles with H* x H™ in U(m) x U(m)
will be referred to as extended Kahler, and bundles with HT x H~ in SU(m) x SU(m)
will be referred to as extended Calabi-Yau. The connections again lift to connections on
the extended spin bundle with structure Spin(d) x Spin(d), and the number of covariantly
constant sections of these bundles play an important role in understanding supersymmetry
in non-geometric backgrounds, as will be discussed elsewhere.

8.2 Generalised holonomy in generalised geometry and M-extended geometry

For an M-geometry on an n-dimensional manifold H, the extended tangent bundle £ has an
FE,-structure and is reducible to one with compact structure group H,,, while the extended
spin bundle & has structure f[n For a conventional geometry, the structure groups reduce
further to SO(n) and Spin(n) respectively, while the more general cases are relevant to
non-geometric backgrounds.

Consider first the case of conventional geometry. Sections of & are then spinor fields
on H, and there is a natural connection on & that generalises (B.1]), given by

. 1 .
Vi=V,+ ﬁrijijkl (8.5)

where F' = dC, V; is the usual spin connection, I'; are Dirac matrices and I';; j are
antisymmetrised products of gamma matrices. Note that, unlike (B.1), this does not project
onto a connection on the tangent bundle. Remarkably, this connection has holonomy H
that is always contained in f[n [@] Interesting geometries arise when the holonomy is a
special subgroup of I;'n

This generalises to the case when the extended spin bundle is not reducible to the
spin bundle, so that the structure group is in fIn, and sections are not spinor fields. The
derivative (B.J) lifts to one acting on £ , and again the holonomy is in H,.
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8.3 Seven-dimensional spaces

Consider the case in which M is seven-dimensional, n = 7. For a Riemannian space with
metric G, the holonomy H(V) of the Levi-Civita connection is in SO(7), There will be at
least one covariantly constant spinor satisfying Va = 0 provided the holonomy is in G,
H(V) C Gs.

For the extended spin bundle, the holonomy H of the connection (BF) is in Hy = SU(S).
There will be at least one section of £ that is covariantly constant with respect to the
connection (B.H) provided the holonomy is in the subgroup of SU(8) preserving an element
a transforming in the 8 of SU(8), H C U(7) x C7.

8.4 Relation with supersymmetry

For type I backgrounds, Killing spinors are spinors a™, o~ that are covariantly constant
Viat =0 (8.6)

and for which in addition there is a scalar ® such that

1 y .

gfgwr”kai::iazéﬂﬂai (8.7)

The bosonic fields of 11-dimensional supergravity are a metric Gpsny and a 3-form gauge

field Cyyyp (M, N = 0,1,...,10), with a vielbein ep? satisfying eyAen®nap = Gun

used to convert coordinate indices M, N to tangent space indices A, B. The supercovariant
derivative acting on spinors is

1
éggaanPQR-SaﬁrPQR)FNPQR, (8.8)

Vi =V —
where F' = dC, the I' 4 are D = 11 Dirac matrices and I" 4 g ¢ are antisymmetrised products
of gamma matrices, I'ap. ¢ = F[AFB ... Fc}- The signature is (— + +---4), and Vs is
the usual Riemannian covariant derivative involving the Levi-Civita connection wy; taking

values in the tangent space group Spin(10,1)
1
VMw:8M~+ZwMABFAB. (8.9)

Each solution of

Vare =0, (8.10)

is a Killing spinor field that generates a supersymmetry leaving the background invariant,
so that the number of supersymmetries preserved by a supergravity background depends on
the number of supercovariantly constant spinors satisfying (B.1(). Any commuting Killing
spinor field € defines a Killing vector v4 = €l 4¢, which is either timelike or null, together
with a 2-form €I' e and a 5-form €' gspopEe.

The integrability conditions for (B.1(]) are satisfied if the background satisfies the su-
pergravity field equations

1

1
Ryn = 1 <FMPQRFNPQR — EQMNFPQRSFPQRS> (8.11)
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and

1
dxF + §F NF =0, (8.12)
but the integrability conditions are weaker than the field equations.
Let 1
f= 21 vporl MPOR (8.13)
and note that the derivative (8.§) can be rewritten as
- 1 1
Vu=Vyu+ —FPQRFMPQR ——I'yf (8.14)
24 12
Then for backgrounds in which the Killing spinor satisfies
fe=0 (8.15)
(such a constraint was used in [F1-F3, [2]) the Killing spinor condition simplifies to
~ 1
Vue= (Va + ﬂ1“PQREMPQR)E =0 (8.16)

and the analysis of supersymmetric backgrounds in terms of the holonomy H(@) K3

Consider product spaces M = M5 x M, of spaces of dimensions n,n = 11 —n, so that
the coordinates can be split into =,y with u,v =1,....,n =11 —nand i,j = 1,...,n,
with a product metric of the form

GMN _ <Gﬂ’6($) Gl?(y)) (8.17)

where g, () has Lorentzian signature and g¢;;(y) has Euclidean signature. A convenient
realisation of the gamma matrices I'j; in terms of the gamma matrices «y, on Mz and the
ones I'; on M, is, for n even,

I,=7®L, TIi=11T; (8.18)

where T, is the chirality operator on M, T, x IL I;. There is a similar realisation for n
odd. A spinor € decomposes as € = n ® « where 7 is a spinor on My and « is a spinor on
M,.

Suppose Mj is n dimensional Minkowski space with flat metric G, and the only
non-vanishing components of I’ are Fj;i; in the ‘internal space’ M,,. Then for any spinor
a on M, satisfying

Via =0 (8.19)
where 1
Vi=V;+ ﬂrﬂf’ﬂjkl (8.20)
and the condition
FijuTa =0 (8.21)

there will be a Killing spinor satisfying (B.10) of the form 7® a where 7 is any (covariantly)
constant spinor in Minkowski space. Thus supersymmetric backgrounds arise when the
connection V has a special holonomy so that there are solutions of (B.19), and in addition
each solution satisfies (B.21]).
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