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metric and 2-form gauge field on which there is a natural action of the group SO(d, d). This

is generalised to d-dimensional manifolds with a metric and 3-form gauge field on which

there is a natural action of the group Ed. This provides a framework for the discussion of

M-theory solutions with flux. A different generalisation is to d-dimensional manifolds with

a metric, 2-form gauge field and a set of p-forms for p either odd or even on which there is

a natural action of the group Ed+1. This is useful for type IIA or IIB string solutions with

flux. Further generalisations give extended tangent bundles and extended spin bundles

relevant for non-geometric backgrounds. Special structures that arise for supersymmetric

backgrounds are discussed.
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1. Introduction

Hitchin’s generalised geometry [1]–[4] studies structures on a d-dimensional manifold M

on which there is a natural action of the group SO(d, d), and in particular it gives an

elegant description of geometries equipped with both a metric G and a 2-form B. Such

geometries with a metric and 2-form and an action of SO(d, d) arise in string theory, so
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that this is a natural framework in which to formulate many problems in string theory

and supergravity [5]–[20]. However, in type II string theory, the group SO(d, d) is part of

a much larger ‘U-duality’ group [21, 22] Ed+1 that acts on G and B together with a set

of other fields on M (the Ramond-Ramond gauge fields) and this suggests that seeking

a generalisation of generalised geometry with SO(d, d) replaced by Ed+1 might provide a

natural framework for the geometries with flux in type II string theory. Here En is the

maximally non-compact real form of the group of rank-n with E-type Dynkin diagram,

so that it is the exceptional group En for n = 6, 7, 8. The U-duality groups En and their

maximal compact subgroups Hn are given in table 1 for 2 ≤ n ≤ 8. These groups were

found to be symmetries of supergravity theories in [21] and the global structure of these

groups and their maximal subgroups was discussed in [23, 24].

M-theory has a similar structure in which there is a metric G and 3-form C on an

n-dimensional manifold M with a natural action of En, and again one might expect a

generalisation of generalised geometry with the 3-form C playing a central role. The

relationship between M-theory and string theory suggests that if the manifold M is a

circle bundle over a manifold M of dimension d = n − 1, then the M-geometry on M

should reduce to a stringy generalised geometry on M .

The aim of this paper is to propose such generalisations, and to set up the framework

needed to study general supersymmetric string or M-theory backgrounds, including non-

geometric ones. This will lead to the introduction of new structures, and in particular

to extended tangent bundles and extended spin bundles for type II geometries and M-

geometries. It will be convenient to refer to the usual generalised geometry involving

SO(d, d) as a type I geometry, to distinguish it from these other geometries, and it indeed

plays a role in type I superstrings.

In generalised geometry, the tangent bundle T is replaced with T ⊕ T ∗, the sum of

the tangent and cotangent bundles, which has a natural inner product of signature (d, d)

preserved by the action of SO(d, d). This group includes the action of a 2-form on the

geometry, which acts as a shift of B. A generalisation of the spin bundle is a bundle S

over M with transition functions in Spin(d, d). Given a choice of spin structure, there is

a correspondence between S and the bundle Λ•T ∗ of formal sums of differential forms on

M , and S splits into the chiral and anti-chiral sub-bundles S+ and S− corresponding to

even and odd forms respectively. The perturbative charges of string theory (momentum

and string charge) fit into a vector of SO(d, d). In addition, there are Ramond-Ramond

charges which are even forms for the type IIA string and odd forms for the IIB string,

and the Ramond-Ramond charges transform according to the spinor representation of the

SO(d, d) subgroup of the U-duality group [22]. This suggests that T ⊕ T ∗ be extended to

T ⊕ T ∗ ⊕ S+ for IIA or T ⊕ T ∗ ⊕ S− for IIB. This turns out to be sufficient for d ≤ 4, but

for d > 4 there are further charges consisting of a five-brane charge given by a 5-form in

Λ5T ∗ and a charge related to the Kaluza-Kein monopoles1 [25] represented by a 5-vector in

1In D = 10 or D = 11, there is a 5-form charge in the superalgebra, ZM1...M5
. Decomposing the indices

M = (0, i) where i = 1, . . . , D − 1 is a spatial index and 0 is a time index gives two charges, a spatial

5-form charge Zi1...i5
which is the NS-NS or M-theory 5-brane charge, and a spatial 4-form charge Z0i1...i4

,

which is the Kaluza-Kein monopole charge, Hodge-dual to a spatial D− 5-vector Zi1...iD−5 [25]. This gives
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Λ5T , so that for type II strings the tangent bundle is generalised to the extended tangent

bundle

T ⊕ T ∗ ⊕ Λ5T ⊕ Λ5T ∗ ⊕ S±

As will be seen in section 6, there is a natural action of Ed+1 on this space for d ≤ 6.

A bundle with structure group O(d, d) is reducible to an O(d) × O(d) bundle. In

generalised geometry, the metric G and 2-form B arise as the moduli for such reductions,

and parameterise a coset space O(d, d)/O(d) × O(d). This is generalised to the coset

Ed+1/Hd+1 which can be parameterised by a metric G and 2-form B and scalar Φ, together

with a set of odd forms C1, C3, . . . for IIA geometries or a set of even forms C0, C2, C4, . . .

for IIB geometries. These extra fields have a natural interpretation in type II string theory

as the dilaton Φ and the Ramond-Ramond p-form gauge fields Cp. The formal sums

C+ = C0 + C2 + C4 + · · · or C− = C1 + C3 + C5 + · · · transform as chiral spinors under

Spin(d, d), with the index ± indicating the chirality. The action of Ed+1 on these fields

includes shifts for each of the p-form gauge fields of the theory.

Comparison with M-theory suggests a different generalisation, replacing T ∗ (corre-

sponding to a string charge) with Λ2T ∗ (corresponding to a membrane charge), so that

the extended tangent bundle includes T ⊕ Λ2T ∗. For manifolds of dimension n > 4, it is

necessary to add Λ5T ∗ (corresponding to a 5-brane charge), and for n > 5 an additional

Λ6T (the Kaluza-Kein monopole charge [25]) is needed. Then for n ≤ 7, the extended

tangent bundle is

T ⊕ Λ2T ∗ ⊕ Λ5T ∗ ⊕ Λ6T

There is a natural action of En on this. The coset space En/Hn can be parameterised by

a metric G, a 3-form C and (for n ≥ 6) a 6-form C̃ on the n-dimensional manifold. The

3-form C can be associated with the 3-form gauge field of 11-dimensional supergravity,

and the 6-form C̃ with the dual gauge field. (Recall that a free 3-form gauge field in

11-dimensions has a dual representation in terms of a 6-form gauge field, related by an

electromagnetic duality, dC̃6 ∼ ∗dC3. The Chern-Simons interaction of 11-dimensional

supergravity prevents the dualisation to a theory written in terms of a 6-form gauge field,

but it can be written in terms of both a 3-form C and a 6-form C̃, [26].) The action of En

on these fields includes shifts of the 3-form field C and 6-form field C̃.

For a d-dimensional manifold, the structure group of T , T ∗, T ⊕ T ∗ (and their tensor

products) is in GL(d,R), which is a subgroup of O(d, d). Twisting with a gerbe can

enlarge the structure group to include the action of exact 2-forms [1, 2, 4], but this is

still only a part of O(d, d); this is the ‘geometric subgroup’ that preserves the Courant

bracket. However, the covariance under the larger group O(d, d) is very suggestive, and

this suggests that bundles with this larger structure group might have an interesting role

to play. String theory can in fact be formulated on a large class of spaces with so-called

non-geometric structures, and including these allows a wider class of transition functions.

For example, for string theory on a manifold M that is an m-torus bundle with fibres

Tm, there is a symmetry under the action of the T-duality group O(m,m;Z), which in

charges in Λ5T ⊕ Λ5T ∗ for D = 10 or in Λ6T ⊕ Λ5T ∗ for D = 11.
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n En Hn dim(En) dim(En/Hn)

2 SL(2,R) × R SO(2) 4 3

3 SL(3,R) × SL(2,R) SO(3) × SO(2) 11 7

4 SL(5,R) SO(5) 24 14

5 Spin(5, 5) (Sp(2) × Sp(2))/Z2 45 25

6 E6(6) Sp(4)/Z2 78 42

7 E7(7) SU(8)/Z2 133 70

8 E8(8) Spin(16)/Z2 248 128

Table 1: The U-duality groups En, their maximal compact subgroups Hn, and the dimensions of

En and the cosets En/Hn.

particular mixes the metric and B-field together. This symmetry allows the construction

of T-folds. These are spaces built from patches which are each of the form Uα × Tm

with Uα open sets in the base, and with transition functions that include O(m,m;Z)

T-duality transformations [27]. As the patching is through symmetries of the theory,

it leads to consistent backgrounds of string theory. However, these are not manifolds

equipped with tensor fields but are considerably more general. The generalised tangent

bundle for such spaces has O(d, d) transition functions not contained within the geometric

subgroup. These have generalisations to U-folds with fibres Tm whose transistion functions

include transformations in the U-duality group Em+1(Z) [27], and the extended geometries

discussed here provide a natural framework to discuss these geometries. Examples of T-

folds have been studied in [30]–[39].

2. Generalised geometry

2.1 The structure of generalised geometry

In Hitchin’s generalised geometry, the tangent bundle T of a d-dimensional manifold M is

replaced with T ⊕ T ∗, so that one considers the formal sum V = v + ξ of a vector field

v with components vi (i = 1, . . . , d) and a one-form ξ with components ξi, which can be

thought of as a vector with 2d components V I

V I =

(
vi

ξi

)
, (2.1)

There is a natural inner product η of signature (d, d) defined by

η(v + ξ, v + ξ) = 2ιvξ

where ι denotes the interior product, so that ιvξ = viξi. The metric has components ηIJ

given by

η =

(
0 11 0

)
, (2.2)
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This is invariant under the orthogonal group O(d, d), with V transforming in the vector

representation V → gV , where g is represented by a matrix gI
J satisfying

gtηg = η (2.3)

The Lie algebra of O(d, d) consists of matrices with the block decomposition

(
A β

Θ −At

)
, (2.4)

Here Ai
j is an arbitrary d × d matrix, and so is a generator of the GL(d,R) subgroup of

matrices g of the form (
M 0

0 (M t)−1

)
, (2.5)

for arbitrary invertible matrices M i
j . The Θij are components of a 2-form Θ ∈ Λ2T ∗

generating the group of matrices (1 0

Θ 1) , (2.6)

sending

v + ξ 7→ v + ξ + ιvΘ (2.7)

while β ∈ Λ2T is a generator of the group of matrices of the form

(1 β

0 1)
, (2.8)

sending

v + ξ 7→ v + ξ + ιξβ (2.9)

The ‘geometric subgroup’ GL(d,R) ⋉ Rd(d−1)/2 generated by A,Θ of matrices of the form

(
M 0

Θ (M t)−1

)
, (2.10)

will play a role in what follows.

There is a natural action of Spin(d, d) on the bundle of formal sums of differential

forms Λ•T ∗ on M , so that interesting geometric structures can be formulated in terms of

spinors. For each V = v + ξ ∈ T ⊕ T ∗, there is a map ΓV : Λ•T ∗ → Λ•T ∗ such that

ΓV : φ 7→ ιvφ + ξ ∧ φ

for any φ ∈ Λ•T ∗. These maps satisfy a Clifford algebra, with

ΓV ΓV ′ + ΓV ′ΓV = −2η(V, V ′)1 (2.11)
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The Clifford action on Λ•T ∗ gives in particular a representation of Spin(d, d) on Λ•T ∗.

The action of GL(d,R) ⊂ Spin(d, d) on Λ•T ∗ is not quite the usual one. If the standard

action of M ∈ GL(d,R) on Λ•T ∗ is denoted M∗, the action of GL(d,R) ⊂ Spin(d, d) is

φ 7→ |det M |1/2M∗φ

so that the relation with the spin bundle S is

S = Λ•T ∗ ⊗ (ΛdT )1/2

The bundle of forms splits into the bundle Λ+T ∗ of even forms and the bundle Λ−T ∗ of

odd forms, corresponding to the decomposition of S into bundles S± of positive or negative

chirality spinors, with

S± = Λ±T ∗ ⊗ (ΛdT )1/2

The bundle (ΛdT )1/2 is trivial and so there is always a non-canonical isomorphism S± ∼

Λ±T ∗; S± and Λ±T ∗ will be used interchangably for the remainder of the paper. (There

is in addition another possible spin structure [4], but this will not be used here.)

The Courant bracket provides a generalisation of the Lie bracket to T ⊕ T ∗, and

plays a central role in generalised geometry, and is preserved under (2.7) provided Θ is

closed. According to Hitchin [2], generalised geometries are structures on T ⊕ T ∗ that are

compatible with the SO(d, d) structure and which satisfy integrability conditions expressed

in terms of the Courant bracket or the exterior derivative.

The transition functions for M are diffeomorphisms, so that the transition functions

for T ⊕ T ∗ are in GL(d,R), although it is sometimes useful to instead regard it as having

structure group in SO(d, d) [4]. This can be generalised by twisting with a gerbe, as will be

reviewed in the next subsection. For d = 2m, a generalised almost complex structure is an

endomorphism J of T ⊕T ∗ that satisfies J 2 = −1 and with respect to which the metric η

is hermitian. It is a generalised complex structure if it is integrable, i.e. the +i-eigenbundle

E < (T ⊕ T ∗) ⊗ C is such that the space of sections of E is closed under the Courant

bracket. Such a structure is preserved under the U(m,m) subgroup of SO(2m, 2m).

Gualtieri introduced the concept of a generalised metric H on T ⊕ T ∗ [4]. This is

a positive definite metric compatible with η, and defines a sub-bundle E+ on which η is

positive definite. The generalised metric can be represented by a matrix HIJ satisfying the

compatibility condition

η−1Hη−1 = H−1 (2.12)

This implies that SI
J defined by

S = η−1H (2.13)

satisfies

S2 = 1 (2.14)

and so is an almost real structure or almost local product structure. (S is sometimes also

referred to as the generalised metric [4].) It has d eigenvalues of +1 and d eigenvalues of

−1, and E+ is the +1 eigenbundle.
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The constraint (2.12) implies that H has d2 independent components and it can be

parameterised in terms of a symmetric matrix Gij and an anti-symmetric matrix Bij as

H =

(
G − BG−1B BG−1

−G−1B G−1

)
(2.15)

and H is positive definite if G is. The norm of the vector V = v + ξ is then

H(V, V ) = G(v, v) + G∗(ξ + ιvB, ξ + ιvB) (2.16)

where G∗ is the metric on T ∗ given by the inverse of G and (ιvB)i = vjBji. Thus intro-

ducing a generalised metric is equivalent to introducing a positive definite metric G and a

2-form B on M . This can be generalised to a metric G of signature (p, q) on M , in which

case the generalised metric given by (2.15) has signature (2p, 2q).

Under an SO(d, d) transformation

H → gtHg (2.17)

This corresponds to a fractional linear transformation of G,B. Defining the d × d matrix

Eij = Gij + Bij (2.18)

and decomposing g into d × d matrices a, b, c, d

g =

(
a b

c d

)
(2.19)

so that

gtηg = η ⇒ atc + cta = 0, btd + dtb = 0, atd + ctb = 1, (2.20)

then the transformation of G,B under the action of the SO(d, d) transformation g is

E′ = (aE + b)(cE + d)−1. (2.21)

In particular, the action of the GL(d,R) subgroup (2.5) is the linear transformation

G → M tGM, B → M tBM, (2.22)

while the Θ transformation (2.6) leaves G invariant and acts as a shift of B:

B → B + Θ (2.23)

However, SO(d, d) transformations not in the geometric subgroup will mix G and B.
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2.2 Gerbes and the generalised tangent bundle

For T⊕T ∗, the structure group is GL(d,R) and introducing a generalised metric corresponds

to introducing a symmetric tensor field G and an anti-symmetric tensor field B on M .

However, this can be generalised to allow B to be a gerbe conection, i.e. a 2-form gauge

field with field strength H = dB, allowing a twisting of this construction to allow transition

functions including the B-shift.

Given an open cover {Uα} of M , there is a 2-form Bα in each {Uα} with Bβ − Bα a

closed 2-form on the overlap Uα ∩Uβ, so that dBβ = dBα = H is a globally defined closed

three-form H. For a suitable open cover, the overlaps have trivial cohomology and

Bβ − Bα = dλαβ

for some 1-form λαβ on the overlap Uα ∩ Uβ . Consistency on triple overlaps Uα ∩ Uβ ∩ Uγ

requires that λαβ + λβγ + λγα is closed and so exact. If it is of the form

λαβ + λβγ + λγα = g−1
αβγdgαβγ

for some U(1)-valued functions

gαβγ : Uα ∩ Uβ ∩ Uγ → S1

satisfying gαβγ = g−1
βαγ and gβγδg

−1
αγδgαβδg

−1
αβγ = 1 on Uα ∩ Uβ ∩ Uγ ∩ Uδ, then Bα defines a

connection on a gerbe and H represents an integral cohomology class. (If H is not in an

integral cohomology class, then

λαβ + λβγ + λγα = dραβγ

for some 0-form ραβγ in Uα∩Uβ∩Uγ satisfying a further consistency condition in quadruple

overlaps.)

The λαβ can be used to define a bundle E over M by identifying T ⊕ T ∗ on Uα with

T ⊕ T ∗ on Uβ by the B-field action

v + ξ 7→ v + ξ + ιvdλαβ

The fibre over a point x in M is again Tx ⊕ T ∗
x , but the transition functions are no longer

in GL(d,R). The bundle E has been called a generalised tangent bundle [2] and has a

structure group in the geometric subgroup of SO(d, d), i.e. the subgroup GL(d,R) ⋉ Ω2,cl,

where Ω2,cl is the space of closed 2-forms.

3. The structure of extended geometries

3.1 Type I extended geometries: generalising the generalised tangent bundle

and spin bundle

To incorporate structures such as T-folds and other non-geometric backgrounds, it is useful

to generalise the structure further and consider general bundles E over a d-dimensional
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space M with structure group O(d, d) or SO(d, d) and split-signature fibre metric η; these

will be generalised geometries in the sense of Hitchin only in the special case in which

the structure group is in the geometric subgroup preserving the Courant bracket, and will

only correspond to T ⊕ T ∗ if the structure group is in GL(d,R). Locally, one can find

a metric G and 2-form B as before, but general O(d, d) transition functions mix G and

B, so that these will not be tensor fields on M in general, and the background will be

‘non-geometric’. Nonetheless, such backgrounds with m-torus fibrations and transition

functions including O(m,m;Z) transformations arise in string theory as T-folds, so that

this is a useful generalisation. Such extended geometries with O(d, d) structure will be

referred to as Type I extended geometries, to distinguish them from the type II and type

M geometries with E-series structure groups to be introduced later. It will also be natural

to introduce an extended spin bundle S with structure group Pin(d, d) or Spin(d, d), when

there is no obstruction to such a double cover of E.

The bundle E can be reduced to one that has structure group in the maximal compact

subgroup O(d)×O(d) or S(O(d)×O(d)). This is equivalent to choosing a sub-bundle E+ on

which η is positive definite, so that E = E+ ⊕E− where E− is the orthogonal complement

of E+, so that η is negative definite on E−. An SO(d, d) bundle E admits a Spin(d, d)

structure only if the second Stiefel-Whitney classes of E± agree, w2(E
+) = w2(E

−) [4, 48];

this is automatically satisfied for T ⊕T ∗, even in the case in which M is not spin, i.e. even

if w2(T ) 6= 0.

The reduction of E to E± defines a positive definite generalised metric

H = η|E+ − η|E− (3.1)

Choosing a generalised metric is equivalent to choosing a reduction of the bundle, and the

space of such reductions at a point x ∈ M is

O(d, d)

O(d) × O(d)
or

SO(d, d)

S(O(d) × SO(d))
(3.2)

Let V± be the projections V± : E → E±. Then

V =

(
V+

V−

)
(3.3)

maps E → E+ ⊕E− and is a representative of the coset O(d, d)/O(d) × O(d). Introducing

indices a = 1, . . . , d labelling a basis for E+ transforming under one O(d) factor and

indices a′ = 1, . . . , d labelling a basis for E− transforming under the other O(d) factor, V+

is represented by a d × 2d matrix Va
I and V− is represented by a d × 2d matrix Va′

I , so

that

VA
I =

(
Va

I

Va′

I

)
, (3.4)

is a vielbein transforming from a general basis labelled by I to a basis for E+⊕E− labelled

by A = (a, a′). The generalised metric is then

H = VtV (3.5)
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with components

HIJ = δABV
A

IV
B

J (3.6)

The generalised metric is not constant over M in general, so H(x) (where x ∈ M) defines

a map H : M → O(d, d)/O(d) × O(d). As well as the manifest covariance under O(d, d),

there is a symmetry under local O(d) × O(d) transformations, given by functions k(x),

with k : M → O(d) × O(d). In particular, the vielbein V(x) transforms as

V(x) → k(x)V(x)g (3.7)

under a local O(d) × O(d) transformation k(x) and rigid transformation g ∈ O(d, d). The

local O(d) × O(d) symmetry can be used to choose a triangular gauge for V over some

neighbourghood of M , so that

V =

(
et 0

−e−1B e−1

)
, (3.8)

for some d-bein ei
a and anti-symmetric d × d matrix Bij. Then

H = VtV =

(
G − BG−1B BG−1

−G−1B G−1

)
. (3.9)

where the metric G = ete, i.e.

Gij = ei
aej

bδab (3.10)

As a result, the fibre metric H(x) is parameterized by a d × d matrix E(x) given by

Eij = Gij + Bij (3.11)

3.2 General extended geometries

The above structure generalises to arbitrary vector bundles with non-compact structure

group G. Consider a vector bundle E over a manifold M with projection π : E → M , fibre

F and structure group G. For an open cover {Uα} of M , π−1(Uα) ∼ Uα × F and a point

in π−1(Uα) can be represented by (xα, Vα) where xα ∈ Uα, Vα ∈ F . The group G acts

as (x, V ) → (x, gV ), where gV ≡ R(g)V and R(g) is the action of g ∈ G on F in some

representation R. Over the overlap Uα ∩ Uβ, the coordinates in π−1(Uα ∩ Uβ) are related

by

Vα = gαβ(x)Vβ (3.12)

where the transition function gαβ(x) is a map gαβ : Uα∩Uβ → G acting on F (and satisfying

the usual consistency conditions).

For any maps Vα : Uα → G, the transition functions

hαβ = VαgαβV
−1
β (3.13)

define a bundle equivalent to E . If G is non-compact with maximal compact subgroup H,

then E can be reduced to a bundle Ē with structure group H. This means that the maps
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Vα : Uα → G can be chosen so that the transition functions (3.13) are in H, hαβ ∈ H. For

any such maps Vα, the maps V ′
α = hαVα will also give transition functions in H, provided

that hα are maps hα : Uα → H. Then a reduction corresponds to an equivalence class

of maps Vα identified under the left action of maps hα : Uα → H, Vα ∼ hαVα. The

equivalence classes then correspond to maps from Uα to the left coset G/H. From (3.13),

the maps Vα have the patching conditions

Vα = hαβVβg−1
αβ (3.14)

There is then a map

V : E → Ē , V : (xα, Vα) → (xα, V̄α) ≡ (xα,Vα(xα))

where the V̄α = Vα(xα)Vα have patching conditions at x

V̄α = hαβ(x)V̄β (3.15)

with transition functions hαβ ∈ H, so that Ē is indeed a vector bundle with structure group

H.

Suppose that the representation R has an H-invariant positive definite metric, giving

a positive definite fibre metric H̄(s̄, s̄) for sections s̄(x) of Ē , and this in turn defines a

positive definite fibre metric for sections s(x) of E , via

H(s, s) = H̄(Vs,Vs) (3.16)

For example, if H is an orthogonal group with hth = 1 where ht is the transpose, then

H̄(Vs,Vs) = s̄ts̄ and H(s, s) = stHs where the matrix H is given by

H = VtV (3.17)

For G = O(d, d), this gives the O(d) × O(d) invariant metric (2.15). Similarly, for unitary

groups with h†h = 1,
H = V†V (3.18)

There is a natural action of H gauge transformations, i.e. of maps hα : Uα → H under

which

Vα(x) → hα(x)Vα, (x, V̄α) → (x, hα(x)V̄α), hαβ → hαhαβh−1
β (3.19)

We will be interested in gauge equivalence classes identified under this action. In particular,

the metric H depends only on the equivalence class, and so is specified by a map M → G/H,

or more generally a section of a bundle with fibre G/H.

Finally, for many cases of interest, H has a natural double cover H̃, and so given the

extended tangent bundle Ē with H-structure, it is natural to seek an extended spin-bundle

Ẽ with structure group H̃ that projects onto Ē under the double cover map p : H̃ → H.

There is in general a topological obstruction for such a double cover, given by the 2nd

Stiefel-Whitney class w2(Ē) = H2(Ē ,Z2). Given a lift of the transition functions hαβ to
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h̃αβ ∈ H̃, the Z2 Cech cohomology class is represented by the h̃αβ h̃βγ h̃γα = ±1 in triple

overlaps, and it is necessary to be able to choose the h̃αβ so that this is +1 in all triple

overlaps. A necessary and sufficient condition for this is that w2(Ē) = 0.

In the following sections, examples of this construction with G = En and H = Hn will

be explored.

4. M-geometries

In this section, the generalisation of generalised geometry suggested by M-theory on an

orientible n-dimensional manifold M are investigated, in which T ⊕ T ∗ with a natural

action of SO(n, n) is replaced by E ∼ T ⊕ Λ2T ∗ ⊕ . . . with a natural action of En, and

the 2-form symmetry of B-shifts is generalised to one of 3-form shifts. The structure

changes from dimension to dimension, so each will be considered in turn. The full explicit

transformations will be given only for n = 4, 7; those for n = 5, 6 follow by truncation of

the n = 7 case.

4.1 n = 4, E4 = SL(5,R)

Consider first the case of a four manifold, with E4 = SL(5,R). The bundle T ⊕ T ∗ is

replaced with T ⊕Λ2T ∗ with 10-dimensional fibres transforming in the 4+6 representation

of SL(4,R). A section is then a formal sum

U = v + ρ

of a vector v and a 2-form ρ which can be thought of as an extended vector with 10

components U I (I = 1, . . . , 10)

U I =

(
vi

ρij

)
, (4.1)

where i, j = 1, . . . , 4 and ρij = −ρji.

There is an action of SL(5,R) on T ⊕Λ2T ∗, as follows. First, there is the natural action

of SL(4,R) acting separately on the vector v and 2-form ρ. There is an action of a 3-form

Θ ∈ Λ3T ∗ sending

v + ρ 7→ v + ρ + ιvΘ (4.2)

and the action of a tri-vector β ∈ Λ3T with components βijk sending

v + ρ 7→ v + ρ + ιρβ

(with (ιρβ)i = 1
2ρjkβ

jki). These are natural generalisations of (2.7), (2.9). Finally, the

group closes on a scaling under which

v + ρ 7→ α3v + α2ρ (4.3)

with α ∈ R, α 6= 0. The adjoint of SL(5,R) decomposes as

24 = 15 + 1 + 4 + 4′
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under SL(4,R), corresponding to these four classes of transformation. The fibres then trans-

form in the 10-dimensional representation of SL(5,R) labelled by the index I = 1, . . . , 10.

An SL(5,R) bundle E can be reduced to an SO(5) bundle Ē , and the reduction is

equivalent to choosing an element V of the coset SL(5,R)/SO(5), or equivalently a positive

definite fibre metric H, for each point x ∈ M. This can be represented by a matrix

function VA
I(x) on some patch U ⊂ M where A = 1, . . . , 10 labels the 10-dimensional

representation of SO(5). Given a metric Gij and orientation on M, the tangent bundle

becomes an SO(4) bundle whose structure group is a subgroup of the SO(5), and the

10-dimensional representation decomposes as 10 = 4 + 6 under SO(4) ⊂ SO(5).

The coset SL(5,R)/SO(5) is 14-dimensional and can be parameterised by a symmetric

matrix Gij transforming in the 10 of SO(4) ⊂ SO(5) and a 3-form Cijk transforming as a

4 of SO(4). At each point x ∈ M, the vielbein V(x) transforms as

V(x) → k(x)V(x)g (4.4)

under a local SO(5) transformation k(x) and rigid transformation g ∈ SL(5,R). It is useful

to introduce a frame field ea
i for TM, so that Gij = δabe

a
ie

b
j with tangent space indices

a, b . . . transforming under SO(4), and the vielbein ea
i is used to convert indices i, j . . .

to a, b . . ., so that e.g. va = ea
iv

i. The local SO(5) symmetry can be used to choose a

triangular gauge for V over some neighbourhood of M, so that

V =

(
ea

i 0

−ej
aeb

kCijk e
[i
aeb

j]

)
(4.5)

It maps U given by (4.1) to

ŪA =

(
ua

uab

)
= VA

IU
I =

(
va

ρab − Cabcv
c

)
(4.6)

An SO(5)-invariant metric on sections of Ē is given by

H̄(Ū , Ū) = H̄ABŪAŪB = δabu
aub +

1

2
δabδcduacubd (4.7)

Then a positive definite generalised metric H on E can be defined by (3.16) giving the norm

of (4.1) as

H(U,U) = G(v, v) + G∗(ρ − ιvC, ρ − ιvC) (4.8)

where G∗ is the norm on 2-forms constructed from G = ete. In terms of components, this

is

H(U,U) = Gijv
ivj +

1

2
GikGjl(ρij − Cijmvm)(ρkl − Cklnvn) (4.9)

so that the metric is represented by the matrix H = VtH̄V which has the form

H =

(
G + 1

2CG−1G−1C −1
2CG−1G−1

−1
2G−1G−1C 1

2G−1G−1

)
(4.10)

The action of the 3-form transformation on V and H gives

C 7→ C + Θ (4.11)

so that the three-form transformation shifts the three-form field C.
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4.2 n = 5, E5 = Spin(5, 5)

Consider next the case of a five-manifold, with E5 = Spin(5, 5). In this case, in addition

to the 2-form, a 5-form is added to the fibres. The bundle T ⊕ T ∗ is then replaced with

T ⊕Λ2T ∗ ⊕Λ5T ∗ with 16-dimensional fibres transforming in the 5 + 10′ + 1 representation

of SL(5,R). A section is then a formal sum

U = v + ρ + σ

of a vector v, a 2-form ρ and a 5-form σ. Given a volume form ǫ ∈ Λ5T ∗ and its dual

ǫ̃ ∈ Λ5T with ιeǫǫ = 1, this is equivalent to to the sum of a 0-form ∗σ = ιeǫσ, a 2-form ρ

and a 4-form ∗v = ιvǫ, and so there is a natural action of Spin(5, 5) on this under which

the fibres transform as 16+, the positive chirality spinor representation. The adjoint of

Spin(5, 5) decomposes under SL(5,R) as

45 = 24 + 1 + 10 + 10′

consisting of the natural action of SL(5,R) on tangent vectors and forms on a 5-fold,

a scaling transformation and the action of a 3-form Θijk and a 3-vector βijk, so that

this is very similar to the n = 4 case. The coset space Spin(5, 5)/H5 where H5 =

(Spin(5)×Spin(5))/Z2 has dimension 25 and can be parameterised by a symmetric matrix

Gij and 3-form Cijk. Then as for n = 4, there is a generalised metric H(x) and vielbein V

parameterised by a metric Gij(x) and 3-form Cijk(x) on M, with the 3-form transforming

as C 7→ C + Θ.

4.3 n = 6, E6

As for n = 5, the bundle T ⊕ T ∗ is replaced with T ⊕ Λ2T ∗ ⊕ Λ5T ∗ with 27-dimensional

fibres transforming in the 6 + 15 + 6 representation of SL(6,R), with a natural action of

E6 acting in the 27 representation. A section is a 27-dimensional vector decomposing as a

formal sum

U = v + ρ + σ

of a vector v, a 2-form ρ and a 5-form σ. The adjoint of E6 decomposes under SL(6,R) as

78 = 35 + 1 + 20 + 20 + 1 + 1

consisting of the natural action of SL(5,R) on tangent vectors and forms on a 5-fold, a

scaling transformation, the action of a 3-form Θijk and a 3-vector βijk, as before, but now

in addition there is the action of a 6-form Θ̃ ∈ Λ6T ∗ and a 6-vector β̃ ∈ Λ6T ; these are

singlets, but regarding them as 6-forms and 6-vectors is suggested by the fact that 6-forms

and 6-vectors arise for n = 7. The coset E6/H6 where H6 = Sp(4)/Z2 is 42-dimensional

and can be parameterised by a symmetric matrix Gij , a 3-form Cijk and a 6-form C̃i1...i6

(dual to a scalar in 6 dimensions). Then the generalised metric H(x) and vielbein V are

parameterised by a metric Gij(x), 3-form Cijk(x) and a 6-form C̃i1...i6(x) on M. The group

E6 has a maximal subgroup SL(6,R) × SL(2,R) under which

27 → (6,2) + (15,1), 78 → (35,1) + (20,2) + (1,3)
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For n = 7, as will be seen below, the bundle T ⊕ T ∗ is replaced with T ⊕ Λ2T ∗ ⊕

Λ5T ∗ ⊕ Λ6T , suggesting that for n = 6 one also consider a generalisation in which Λ6T is

added to the generalised tangent bundle. Then Λ6T is invariant under E6 and SL(6,R), so

that E6 acts on T ⊕ Λ2T ∗ ⊕ Λ5T ∗ ⊕ Λ6T in the 27 + 1 representation. This extra singlet

corresponds to an extra charge that is allowed by the supersymmetry algebra [49]. It is not

known whether states carrying this charge arise in M-theory, but if they do, their presence

would have dramatic implications [50].

4.4 n = 7, E7

For n = 7, the bundle T ⊕ T ∗ is replaced with

T ⊕ Λ2T ∗ ⊕ Λ5T ∗ ⊕ Λ6T

with 56-dimensional fibres transforming in the 7 + 21′ + 21 + 7′ representation of SL(7,R),

with a natural action of E7 acting in the 56 representation. E7 has a maximal SL(8,R)

subgroup, and these SL(7,R) representations combine into the 28 + 28′ of SL(8,R). A

section is a 56-dimensional vector decomposing as a formal sum

U = v + ρ + σ + τ

of a vector v, a 2-form ρ, a 5-form σ and a 6-vector τ .

The adjoint of E7 decomposes under SL(7,R) as

133 = 48 + 1 + 35 + 35′ + 7 + 7′

and so in addition to the standard action of SL(7,R) and a scaling, there is the action of

a 3-form Θ ∈ Λ3T ∗, a 3-vector β ∈ Λ3T , a 6-form Θ̃ ∈ Λ6T ∗ and a 6-vector β̃ ∈ Λ6T . The

action of the 6-form and 6-vector combine with the action of SL(7,R) and the scaling to

generate an SL(8,R) subgroup. The coset E7/H7 where H7 = SU(8)/Z2 is 70-dimensional

and can be parameterised by a symmetric matrix Gij , a 3-form Cijk and a 6-form C̃i1...i6

(70 = 28 + 35 + 7). Then the generalised metric H(x) and vielbein V is specified in terms

of a metric Gij(x), 3-form Cijk(x) and a 6-form C̃i1...i6(x) on M.

The action of E7 can be understood as follows. Consider the 8-manifold N = M× S1

with the natural U(1) action generated by a vector k tangent to S1; let k̃ be the dual

one-form on S1, with k̃(k) = 1. If θ ∼ θ + 2π is the S1 coordinate, then k = ∂/∂θ and

k̃ = dθ. A 2-form φ on N is specified by a 1-form φ1 = ιkφ and a 2-form φ2 = φ − k̃ ∧ ιkφ

with ιkφ2 = 0, and if φ is U(1) invariant (i.e. the Lie derivative Lkφ = 0) these pull-back

to a 1-form φ′
1 and 2-form φ′

2 on M. We can then define a 2-form and 6-vector on M

by ρ = φ′
2 and τ = ∗φ′

1 = ιφ′

1
ǫ̃ where ǫ̃ is the 7-vector on M dual to the volume form ǫ.

The natural action of SL(8,R) on Λ2T ∗N gives the action of SL(8,R) on φ and hence on

ρ, τ which transform according to the 28′ representation. Similarly, an invariant bi-vector

χ ∈ Λ2TN gives a vector χ′
1 ∈ TM and a bi-vector χ′

2 ∈ Λ2TM, and these define a vector

v = χ′
1 and a 5-form σ = ∗χ′

2 = ιχ′

2
ǫ. The action of SL(8,R) on Λ2TN then gives the

SL(8,R) transformations of v, σ which combine into the 28 representation.

– 15 –



J
H
E
P
0
7
(
2
0
0
7
)
0
7
9

The remaining generators of E7 combine into a 4-form on N , Σ ∈ Λ4T ∗N . The

infinitesimal action U(Σ) of Σ on φ + χ ∈ Λ2T ∗N ⊕ Λ2TN is

U(Σ) : φ + χ 7→ φ + χ + ιχΣ + ιφ ∗ Σ (4.12)

where ∗Σ is the dual on N , ∗Σ = ιΣ(k ∧ ǫ̃) ∈ Λ4TN . The 4-form Σ gives a 3-form

Θ and 4-form β′ on M, and the 4-form β′ dualises to a 3-vector β ∈ Λ3TM (given by

β = ∗β′ = ιβ′ ǫ̃). Then the transformation (4.12) gives the infinitesimal transformation of

U = v + ρ + σ + τ under the action of the 3-form Θ and 3-vector β. The corresponding

transformations under En in dimensions n < 7 follow by truncation.

The vielbein V is constructed following [21], and can be parameterised in terms of Gij ,

the 3-form Cijk and a vector Bj = 1
6!ǫ

ji1...i6C̃i1...i6 in the factorised form

V = αβ exp[U(C ∧ k)] (4.13)

Here U(C ∧ k) is the map (4.12) with

Σ = C ∧ k

This Σ has components ΣIJKL where I = 1, . . . , 8 label coordinates on N which satisfy

(∗Σ)IJKLΣKLMN(∗Σ)MNPQ = 0 (4.14)

and as a result U(C ∧ k) is nilpotent,

[U(C ∧ k)]4 = 0

Then the exponential becomes the polynomial

exp[U(C ∧ k)] = 1 + U +
1

2
U2 +

1

6
U3 (4.15)

and so V is cubic in the 3-form C. The α, β are SL(8,R) transformations acting in the

28 + 28′ representation. Their action in the fundamental 8-dimensional representation are

given by 8 × 8 matrices αI
J , βI

J which take the (7 + 1) × (7 + 1) block form

α =

(
ea

j 0

0 e−1

)
, β =

(
δi

j Bi

0 1

)
, (4.16)

where ea
i is a vielbein for M with ea

ie
b
jδab = Gij and e = det(ei

a) =
√

det(Gij). The

generalised metric is then given by

H = VtV

and is polynomial in both C and C̃ = ∗B.
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n En R SL(n,R) reps E

2 SL(2,R) × R 2+1 2+1 E ∼ T ⊕ Λ2T ∗

3 SL(3,R) × SL(2,R) (3, 2) 3 + 3 E ∼ T ⊕ Λ2T ∗

4 SL(5,R) 10 4 + 6′ E ∼ T ⊕ Λ2T ∗

5 Spin(5, 5) 16 5 + 10′ + 1 E ∼ T ⊕ Λ2T ∗ ⊕ Λ5T ∗

6 E6(6) 27(+1) 6 + 15′ + 6(+1) E ∼ T ⊕ Λ2T ∗ ⊕ Λ5T ∗(⊕Λ6T )

7 E7(7) 56 7 + 21′ + 21 + 7′ E ∼ T ⊕ Λ2T ∗ ⊕ Λ5T ∗ ⊕ Λ6T

Table 2: The bundle E over an n-dimensional manifold M has fibre in the representation R of

Ed+1. The decomposition into SL(n,R) representations gives a corresponding decomposition of E .

n En dim(En) dim(En/Hn) Coset moduli

2 SL(2,R) × R 4 3 G

3 SL(3,R) × SL(2,R) 11 7 =6+1 G,C3

4 SL(5,R) 24 14 =10+4 G,C3

5 Spin(5, 5) 45 25 =15+10 G,C3

6 E6(6) 78 42=21+20+1 G,C3, C6

7 E7(7) 133 70=28+35+7 G,C3, C6

Table 3: The U-duality groups En, the dimensions of the cosets En/Hn and the parameterisation

of the cosets in terms of a metric G, a 3-form C3 and a 6-form C6.

5. Type M extended tangent bundles and extended spin bundles

The bundles identified in the last section are summarised in table 2, with a natural action

of En on the fibres in the representation R. The coset En/Hn is parameterised by the fields

given in table 3.

As discussed in section 2, T ⊕ T ∗ strictly speaking has structure group GL(n,R), and

this can be extended by twisting with a gerbe to a generalised tangent bundle with structure

group GL(n,R) ⋉ Ω2,cl, where Ω2,cl is the bundle of closed 2-forms, and this preserves the

Courant bracket. In section 3.1, this was generalised further to type I extended tangent

bundles with structure group O(n, n). This will not preserve the Courant bracket in general,

but such structures are relevant for non-geometric backgrounds in string theory.

In the same way, the bundle

T ⊕ Λ2T ∗ ⊕ Λ5T ∗ ⊕ Λ6T

has structure group GL(n,R). This can again be twisted with a gerbe, in a similar way to

section 2.2.

Consider first T ⊕Λ2T ∗. The 3-form C can be taken to be a connection with transition

functions

(δC)αβ ≡ Cβ − Cα = dλαβ

for some 2-forms λαβ on the overlaps Uα ∩ Uβ with consistency conditions

(δλ)αβδ ≡ λαβ + λβγ + λγα = dκαβγ
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for 1-forms καβγ on triple overlaps Uα ∩ Uβ ∩ Uγ . These satisfy

(δκ)αβγδ ≡ καβγ + κβγδ + κγδα + κδαβ = g−1
αβγδdgαβγδ (5.1)

for some maps gαβγδ : Uα ∩ Uβ ∩ Uγ ∩ Uδ → U(1) from quadruple overlaps to U(1), which

in turn satisfy

gαβγδgβγδǫgγδǫαgδǫαβgǫαβγ = 1 (5.2)

on quintuple overlaps. (This could be generalised to allow

καβγ + κβγδ + κγδα + κδαβ = dφαβγδ (5.3)

for some 0-forms φαβγδ on quadruple overlaps satisfying a consistency condition

(δφ)αβγδǫη = cαβγδǫη on quintuple overlaps for constants cαβγδǫη satisfying (δc)αβγδǫηκ = 0.

The λαβ can be used to define a bundle E over M by identifying T ⊕Λ2T ∗ on Uα with

T ⊕ Λ2T ∗ on Uβ by the C-field action v + ρ 7→ v + ρ + ivdλαβ . The fibre over a point x

in M is again Tx ⊕ Λ2T ∗
x , but the transition functions are now in GL(d,R) ⋉ Ω3,cl, where

Ω3,cl is the bundle of closed 3-forms. This preserves the Courant bracket on T ⊕ Λ2T ∗.

This extends to T⊕Λ2T ∗⊕Λ5T ∗⊕Λ6T , with the 6-form C̃ a connection with transition

functions

(δC̃)αβ ≡ C̃β − C̃α = dλ̃αβ

for some 5-forms λ̃αβ on the overlaps Uα∩Uβ satisfying similar consistency conditions to the

above. The group En has a subgroup containing GL(n,R) and transformations generated

by a 3-form and (for n = 6, 7) a 6-form, and the fibres

U = v + ρ + σ + τ

can be patched together on overlaps using such transformations with closed 3-form and 6-

form generators. The structure group is then generated by GL(n,R), Ω3,cl and Ω6,cl, where

Ωp,cl is the bundle of closed p-forms. The action of the 3-forms and 6-forms generates

a non-trivial algebra; if δ3(Λ) is the transformation generated by a closed 3-form Λ and

δ6(Σ) is the transformation generated by a closed 6-form Σ, then these satisfy an algebra

A whose only non-trivial commutation relation is [26]

[δ3(Λ), δ3(Λ
′)] = δ6(Λ ∧ Λ′)] (5.4)

Then the structure group is GL(n,R) ⋉ A.

To incorporate non-geometric backgrounds, the bundle T ⊕ Λ2T ∗ ⊕ Λ5T ∗ ⊕ Λ6T with

transition functions in GL(n,R) (or its generalisation twisted by gerbes with structure

group GL(n,R)⋉ (Ω3,cl ⊕Ω6,cl)) is generalised to a vector bundle E over the n-dimensional

oriented manifold M with structure group En and fibres in the representation R given

in table 2 for each value of n. This will be referred to as an extended tangent bundle.

In general, the transition functions will mix the metric G with the gauge fields C3, C6, so

that these will be defined locally in patches through the choice of Vα, but will not patch

together to form tensor fields or gerbe connections.
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n En Hn H̃n

2 SL(2,R) × R SO(2) Spin(2)

3 SL(3,R) × SL(2,R) SO(3) × SO(2) Spin(3) × Spin(2)

4 SL(5,R) SO(5) Spin(5)

5 Spin(5, 5) (Sp(2) × Sp(2))/Z2 Sp(2) × Sp(2)

6 E6(6) Sp(4)/Z2 Sp(4)

7 E7(7) SU(8)/Z2 SU(8)

8 E8(8) Spin(16)/Z2 Spin(16)

Table 4: The U-duality groups En, their maximal compact subgroups Hn, and the double covers

H̃n of Hn.

As discussed in section 3.2, the extended tangent bundle E with structure group En

can be reduced to a bundle Ē with structure group Hn, the maximal compact subgroup of

En given in table 1, and the reduction is equivalent to a choice of vielbein V. The groups

Hn each have a natural double cover H̃n given in table 4. The various Z2 factors and

double cover maps are given in [23]. An M-type extended spin bundle Ẽ is a bundle over

M that projects onto Ē under the projection p : H̃n → Hn, and a necessary and sufficient

condition for this is that w2(Ē) = 0.

6. Type II geometries

In this section, the generalisations of generalised geometry suggested by type II string

theory on a d-dimensional manifold M are studied, in which T ⊕ T ∗ with a natural action

of SO(d, d) is replaced by E± ∼ T ⊕ T ∗ ⊕ S± ⊕ . . . with a natural action of Ed+1. The

positive chirality spin bundle S+ is used for type IIA string backgrounds and the negative

chirality spin bundle S− is used for type IIB string backgrounds, so E+ will be referred to

as a type IIA geometry and E− will be referred to as a type IIB geometry. For a given

embedding SO(d, d) ⊂ Ed+1, the two choices of chirality give two distinct representations

R± of Ed+1. Equivalently, one could fix the representation R of Ed+1 and choose two

different embeddings SO(d, d) ⊂ Ed+1 to obtain two decompositions E ∼ T ⊕T ∗⊕S±⊕ . . . .

6.1 d = 3, E4 = SL(5,R)

Consider first the case d = 3, with E4 = SL(5,R). For E+, we take the fibres to be

in the 10 representation. Under the SL(4,R) = Spin(3, 3) subgroup, the 10 of SL(5,R)

decomposes as 10 → 6 + 4, corresponding to the vector and negative chirality spinor

representations of Spin(3, 3). Under SL(3,R) ⊂ Spin(3, 3), the 6 decomposes into the

3 + 3′, and the 4 decomposes into the 1 + 3. Then locally the fibres of E+ decompose into

T ⊕ T ∗ ⊕ Λ0T ∗ ⊕ Λ2T ∗. A section is then a formal sum

U = v + ξ + ρ0 + ρ2
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d Ed+1 R Spin(d, d) reps E

2 SL(3,R) × SL(2,R) (3, 2) 4 + 2± E ∼ T ⊕ T ∗ ⊕ S±

3 SL(5,R) 10 6 + 4± E ∼ T ⊕ T ∗ ⊕ S±

4 Spin(5, 5) 16 8 + 8± E ∼ T ⊕ T ∗ ⊕ S±

5 E6(6) 27(+1) 10 + 1(+1) + 4± E ∼ T ⊕ T ∗ ⊕ Λ5T ∗(⊕Λ5T ) ⊕ S±

6 E7(7) 56 12 + 12 + 32± E ∼ T ⊕ T ∗ ⊕ Λ5T ⊕ Λ5T ∗ ⊕ S±

Table 5: The bundle E over a d-dimensional manifold M has fibre in the representation R of Ed+1.

The decomposition into Spin(d, d) representations gives a corresponding decomposition of E . The

upper sign is for the IIA geometry and the lower one for IIB geometry.

of a vector v, a 1-form ξ, a 0-form ρ0 and a 2-form ρ2. The 0-form ρ0 and 2-form ρ2

combine to form a positive chirality spinor of Spin(3, 3), so that U is the sum of a vector

V = v + ξ and a spinor ρ+ = ρ0 + ρ2 of Spin(3, 3).

Similarly, for E−, we take the fibres to be in the dual 10′ representation, decomposing

as 10′ → 6 + 4′ under SL(4,R) = Spin(3, 3), and further decomposing into SL(3,R)

representations gives 3 + 3′ + 1 + 3′. Then a section is a formal sum

U = v + ξ + ρ1 + ρ3

of a vector v, a 1-form ξ, a 1-form ρ1 and a 3-form ρ3, in

T ⊕ T ∗ ⊕ T ∗ ⊕ Λ3T ∗ ∼ T ⊕ T ∗ ⊕ S−

The 1-form ρ1 and 3-form ρ3 combine to form a negative chirality spinor of Spin(3, 3), so

that U is the sum of a vector V = v + ξ and a spinor ρ− = ρ1 + ρ3 of Spin(3, 3).

The adjoint of SL(5,R) decomposes under Spin(3, 3) as

24 = 15 + 1 + 4+ + 4− (6.1)

with two spinor generators Θ± ∈ S±. In addition to the standard action of Spin(3, 3) and a

scaling transformation, there are two extra generators in spin representations of Spin(3, 3)

that transform T ⊕ T ∗ and S± into one another. The coset space SL(5,R)/SO(5) is 14-

dimensional and can be parameterised by a metric Gij , 2-form Bij and scalar Φ, together

with either even forms C0, C2 combining into a positive chirality spinor C+, or odd forms

C1, C3 combining into a positive chirality spinor C−. These two possibilities correspond

to two gauge choices for the local SO(5). The parametrisation in terms of C+ is useful for

the IIA string and that in terms of C− for the IIB string. The generators Θ± act as shifts

of C±,

C± 7→ C± + Θ±

6.2 General d ≤ 6

A similar structure applies for other d ≤ 6, as summarised in table 3. For d = 2, 3, 4,

T ⊕ T ∗ is extended to

E± = T ⊕ T ∗ ⊕ S±
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with a natural action of Ed+1. For example, for d = 4, the fibre is in the positive chirality

spinor representation 16+ of E5 = Spin(5, 5) for the IIA geometry. Under the natural

embedding of Spin(4, 4) ⊂ Spin(5, 5), the 16+ decomposes into the spinor representations

8+ + 8− of Spin(4, 4). This is related by Spin(4, 4) triality to an embedding in which it

decomposes into a vector and spinor 8v + 8+, and this is the embedding used here, with

E+ ∼ T ⊕ T ∗ ⊕ S+. For type IIB, E ∼ T ⊕ T ∗ ⊕ S−, and this can either be regarded

as coming from the same embedding of Spin(4, 4) ⊂ Spin(5, 5) but with the fibres in the

negative chirality spinor representation 16− of Spin(5, 5), or as arising from keeping the

same 16+ representation but choosing a different embedding of Spin(4, 4) ⊂ Spin(5, 5)

(related by triality to the other two embeddings discussed above).

For d = 5, 6, T ⊕ T ∗ is extended to

E ∼ T ⊕ T ∗ ⊕ Λ5T ⊕ Λ5T ∗ ⊕ S±

transforming under Ed, with Λ5T corresponding to NS 5-brane charge and Λ5T ∗ corre-

sponding to KK monopole charge. For d = 5, this is the reducible 27 + 1 representation,

and the Λ5T factor can be removed to leave the 27. For d = 6, E7 has a maximal sub-

group SO(6, 6) × SL(2,R), and under this the 56 decomposes as 56 = (12, 2) + (32, 1). As

Λ5T ⊕ Λ5T ∗ ∼ T ∗ ⊕ T for d = 6,

E ∼ T ⊕ T ∗ ⊕ T ⊕ T ∗ ⊕ S±

and T ⊕ T ∗ forms an SL(2,R) doublet with Λ5T ⊕ Λ5T ∗, with both in the 12-dimensional

vector representation of SO(6, 6).

The decomposition of the adjoint of Ed+1 into Spin(d, d) representations is given in

table 5. In each case there are two spinor generators, which are of the same chirality for

d even and opposite chiralities for odd d. Convenient parameterisations of the coset space

Ed+1/Hd+1 are also given. For each d, these are represented by

G,B, B̃,Φ, C∓

including the d2 parameters assembled into the metric G and 2-form B, a scalar Φ, and a 6-

form B̃ which only contributes for d = 6, corresponding to a 6-form field dual to the 2-form

B. In addition, for the IIA theory there is a negative chirality spinor C− corresponding to

a set of odd forms C− ∼ C1, C3, C5, while for the IIB theory there is a positive chirality

spinor C− corresponding to a set of even forms C+ ∼ C0, C2, C4, C6.

6.3 Reduction of M-geometries to type IIA geometries

Consider an M-geometry on an n-dimensional manifold M which is a circle bundle over a

d = n − 1-dimensional manifold M , with n ≤ 7. As in subsection 4.4, each p-form on M

that is invariant under the circle action projects to a p-form and a p − 1-form on M , and

each invariant p-vector on H projects to a p-vector and a p − 1-vector on M . Thus

ΛpTM|U(1) ∼ ΛpTM ⊕ Λp−1TM, ΛpT ∗M|U(1) ∼ ΛpT ∗M ⊕ Λp−1T ∗M (6.2)
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d Ed+1 Adjoint Spin(d, d) decomposition Ed+1/Hd+1 parameterisation

2 SL(3,R) × SL(2,R) 8 + 3 6 + 1 + 2∓ + 2∓ 7 = 6 + 1 + 2∓

3 SL(5,R) 24 15 + 1 + 4+ + 4− 14 = 9 + 1 + 4∓

4 Spin(5, 5) 45 28 + 1 + 8∓ + 8∓ 25 = 16 + 1 + 8∓

5 E6(6) 78 45 + 1 + 16+ + 16− 42 = 25 + 1 + 16∓

6 E7(7) 133 66 + 1 + 1 + 1 + 32∓ + 32∓ 70 = 36 + 1 + 1 + 32∓

Table 6: The bundle E over a d-dimensional manifold M has fibre in the representation R of Ed+1.

The decomposition into Spin(d, d) representations gives a corresponding decomposition of E .

The M-geometry on M is based on

T ⊕ Λ2T ∗ ⊕ Λ5T ∗ ⊕ Λ6T

For invariant forms and multi-vectors, this reduces to the following structure on M :

T ⊕T ∗⊕Λ5T ⊕Λ5T ∗⊕ [Λ0T ∗⊕Λ2T ∗⊕Λ4T ∗⊕Λ6T ∗] ∼ T ⊕T ∗⊕Λ5T ⊕Λ5T ∗⊕S+ (6.3)

This uses that for d = 6, Λ6TM ∼ Λ6T ∗M , while for d < 6, Λ6TM does not arise.

The generalised metric on M is parameterised by a metric G, a 3-form C and a

6-form C̃. If these are invariant under the circle action, then the 3-form projects to a

2-form B and 3-form C3, the 6-form C̃ gives a 6-form B̃ and a 5-form C5, while the

metric projects to a metric GM , 1-form C1 and scalar Φ on M . In this way the M-

geometry generalised metric H(G,C, C̃) on M gives rise to the IIA-geometry generalised

metric H(GM , B, B̃,Φ, C1, C3, C5) depending on the IIA-geometry fields on a manifold of

dimension d ≤ 6:

{GM , B, B̃,Φ, C1, C3, C5} ∼ {GM , B, B̃,Φ, S−} (6.4)

The explicit parameterisation of the M-geometry generalised metric H on a 7-fold M given

in subsection 4.4 then gives that of the type-IIA generalised metric on a 6-fold M , and the

parameterisation of the type-IIA generalised metric for d < 6 follows by truncation.

7. Type II extended tangent bundles and extended spin bundles

The type II geometries have extended tangent spaces of the form E ∼ T ⊕ T ∗ ⊕ Λ± or

E ∼ T ⊕ T ∗ ⊕ Λ5T ⊕ Λ5T ∗ ⊕ Λ±

where Λ± are the bundles of even or odd forms, and these have structure group GL(d,R).

The coset space is parameterised by the fields G,B, B̃,Φ, C∓. This structure can be twisted

by gerbes by allowing the p-form fields to be gauge fields with transition functions that

are closed p-forms. The action of Ed+1 includes transformations generated by p-forms for

the same values of p that act as shifts of the p-form gauge fields and so can be used in

the transition functions in the same way as in section 5. As in section 5, this can be

generalised to allow general vector bundles with structure group Ed+1 and with fibres in
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the representations R± given in table 5. Again, this will give a non-geometric construction

in general, as the transition functions will mix the metric with the various gauge fields.

The type II extended tangent bundle Ed+1 over a d-manifold M with structure group Ed+1

reduces to a bundle Ē with compact structure group Hd+1, and a type II generalised spin-

bundle is a bundle Ẽ with structure group H̃d+1, the double cover of Hd+1 from table 4,

that projects onto Ē under the double cover map.

8. Special structures, generalised holonomy and supersymmetry

In Riemannian geometry, interesting classes of geometry are characterised by specifying

the holonomy of the Levi-Civita connection. In n dimensions, a general space will have

holonomy O(n), but a Kahler space has holonomy U(n/2) (for n even), a Calabi-Yau space

has holonomy SU(n/2) (for n even), and special holonomies G2 and Spin(7) can arise for

n = 7, 8 respectively. There is an intimate relation between the holonomy and the number

of covariantly constant spinors, and hence the number of supersymmetries preserved when

the geometry is used in a supergravity solution.

In generalised geometry, interesting classes are given by generalised complex [1], gen-

eralised Kahler [4] and generalised Calabi-Yau geometries [1], and these too are related to

supersymmetry [5]–[20].

In previous sections, extended tangent and spin bundles of types I,II and M were

discussed, and geometries specified by a metric G and various antisymmetric tensor fields.

In this section, connections on the extended spin bundle that are constructed from this

geometrical data will be discussed, and interesting restrictions on the geometry defined by

restricting the holonomies of these connections.

8.1 Generalised holonomy in generalised geometry and type I extended geom-

etry

As was seen in section 3.1, a type I extended tangent bundle is a bundle E over a d-

dimensional space M with structure group O(d, d) (or SO(d, d)), and reduces to a bundle

E+ ⊕ E− with structure group O(d) × O(d) or S(O(d) × O(d)), and each sub-bundle is

isomorphic to the tangent bundle, E± ∼ T [4].

Consider first the case in which the extended geometry is a generalised geometry, which

will be the case if the structure group of E is in GL(d,R) ⋉ Ω2,cl, so that for E+ ⊕ E− it

is in the diagonal O(d) ⊂ O(d) × O(d). A generalised metric corresponds to a metric G

and closed 3-form H on M , with H = dB for some 2-form gerbe connection B. Let ∇±

be the metric connection on T given by the Levi-Civita connection plus torsion ±1
2G−1H,

∇± = ∇± 1
2G−1H, so that

∇±
i vj = ∇iv

j ±
1

2
Hj

ikv
k (8.1)

where Hj
ik = HiklG

lj .

The holonomies of these connections, H± = H(∇±), are in O(d), H± ⊆ O(d). If

d = 2m and H+ ⊆ U(m), then there is an almost complex structure J+ that is parallel

with respect to ∇+, ∇+J+ = 0. Similarly, if H− ⊆ U(m) there is an almost complex
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(p, q) H+ H− dimension

(1, 1) O(d) O(d) d

(2, 1) U(m) O(2m) 2m

(2, 2) U(m) U(m) 2m

(4, 1) Sp(M) O(4M) 4M

(4, 2) Sp(M) U(2M) 4M

(4, 4) Sp(M) Sp(M) 4M

Table 7: The holonomies H+, H− giving p−1 complex structures J+ and q−1 complex structures

J− for manifolds of various dimension, which allow the construction of sigma-models with (p, q)

supersymmetry.

structure J− with ∇−J− = 0. The metric is hermitian with respect to each structure. An

interesting case is that in which H± ⊆ U(m), and this gives precisely the geometry needed

to define a sigma-model with (2,2) world-sheet supersymmetry [45]. The superalgebra

closes off-shell if both J± are integrable, and this gives precisely the bihermitian geometry

of [45] which has been termed generalised Kahler geometry in [4].

The isomorphism E± ∼ T then gives corresponding connections ∇± on E±, and the

connection with supersymmetry suggests using the connection ∇+ on E+ and the connec-

tion ∇− on E−. Then the almost complex structures J± on T correspond to generalised

almost complex structures J1,J2 on E, and if J± are integrable, then J1,J2 are Courant-

integrable and so are generalised almost complex structures [4].

There is a similar story for other holonomy groups [46, 47]. In table 7, the holonomy

groups H± that give sigma-models with (p, q) supersymmetry are given. (The cases (q, p)

are given by interchanging H+,H−.)

In each case, there are p− 1 almost complex structures J+
α , α = 1, . . . , p− 1 satisfying

∇+J+
α = 0, and q−1 almost complex structures J+

α′ , α′ = 1, . . . , q−1 satisfying ∇−J−
α′ = 0.

If there are three J+ or J−, they satisfy the quaternion algebra and so constitute an

almost quaternionic structure. Each pair (J+
α , J−

α′) defines two generalised almost complex

structures J αα′

1 ,J αα′

2 as in [4], giving 2(p−1)(q−1) generalised almost complex structures.

For the (4, 2) case, there are 3+3 generalised almost complex structures J α
1 ,J α

2 satisfying

an algebra with e.g.

[J α
1 ,J β

1 ] = [J α
2 ,J β

2 ] = ǫαβγJ γ
1 Π+ (8.2)

where Π± is the projection Π± : E → E±. For the (4, 4) case, there are 9+9 generalised

almost complex structures J αα′

1 ,J αα′

2 . If all the almost complex structures are integrable,

then the space is generalised Kahler if p ≥ 2 and q ≥ 2. It seems natural to refer to the

(4,4) case [45] as generalised hyperkahler, as in [54, 55].

The connections ∇± on T lift to connections on the spin bundle (assuming M is spin),

with

∇̃±
i α = ∇iα ±

1

8
HijkΓ

jkα (8.3)
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for spinors α, where Γij = Γ[iΓj] and Γi satisfy the Clifford algebra

{Γi,Γj} = 2Gij1 (8.4)

The holonomies H̃± of ∇̃± are in Spin(d) and determine the number of covariantly constant

spinors α± satisfying ∇̃±α± = 0 [46]. For general holonomy H̃+ = Spin(d), there are no

covariantly constant spinors, while if d = 2m and H̃+ ⊆ SU(m), then there are at least two

satisfying ∇̃+α+ = 0. The relation between holonomy and the number of parallel spinors

is well-known: for example, for d = 8, there will be 1, 2, 3 or 4 such spinors for holonomies

Spin(7),SU(4),Sp(2),SU(2)× SU(2) respectively, while for d = 7, there is one such spinor

for holonomy G2.

Similar results apply for type I extended geometries. A bundle E with O(d, d) structure

reduces to a bundle E+ ⊕E− with structure group O(d)×O(d). In special cases, this will

be reducible, and in this extended case, the structure group of E+ need not be the same as

that for E−. The connections with torsion ∇± again give connections on E±, and we choose

the connection ∇+ on E+ and ∇− on E−. Again, there are interesting geometries with

restrictions on the holonomies H±. For d = 2m, bundles with H+ ×H− in U(m) × U(m)

will be referred to as extended Kahler, and bundles with H+ × H− in SU(m) × SU(m)

will be referred to as extended Calabi-Yau. The connections again lift to connections on

the extended spin bundle with structure Spin(d)×Spin(d), and the number of covariantly

constant sections of these bundles play an important role in understanding supersymmetry

in non-geometric backgrounds, as will be discussed elsewhere.

8.2 Generalised holonomy in generalised geometry and M-extended geometry

For an M-geometry on an n-dimensional manifold H, the extended tangent bundle E has an

En-structure and is reducible to one with compact structure group Hn, while the extended

spin bundle Ẽ has structure H̃n. For a conventional geometry, the structure groups reduce

further to SO(n) and Spin(n) respectively, while the more general cases are relevant to

non-geometric backgrounds.

Consider first the case of conventional geometry. Sections of Ẽ are then spinor fields

on H, and there is a natural connection on Ẽ that generalises (8.1), given by

∇̃i = ∇i +
1

24
ΓjklFijkl (8.5)

where F = dC, ∇i is the usual spin connection, Γi are Dirac matrices and Γij...k are

antisymmetrised products of gamma matrices. Note that, unlike (8.1), this does not project

onto a connection on the tangent bundle. Remarkably, this connection has holonomy H

that is always contained in H̃n [42]. Interesting geometries arise when the holonomy is a

special subgroup of H̃n.

This generalises to the case when the extended spin bundle is not reducible to the

spin bundle, so that the structure group is in H̃n, and sections are not spinor fields. The

derivative (8.5) lifts to one acting on Ẽ , and again the holonomy is in H̃n.
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8.3 Seven-dimensional spaces

Consider the case in which M is seven-dimensional, n = 7. For a Riemannian space with

metric G, the holonomy H(∇) of the Levi-Civita connection is in SO(7), There will be at

least one covariantly constant spinor satisfying ∇α = 0 provided the holonomy is in G2,

H(∇) ⊆ G2.

For the extended spin bundle, the holonomy H of the connection (8.5) is in H̃7 = SU(8).

There will be at least one section of Ẽ that is covariantly constant with respect to the

connection (8.5) provided the holonomy is in the subgroup of SU(8) preserving an element

α transforming in the 8 of SU(8), H ⊆ U(7) ⋉ C7.

8.4 Relation with supersymmetry

For type I backgrounds, Killing spinors are spinors α+, α− that are covariantly constant

∇̃±α± = 0 (8.6)

and for which in addition there is a scalar Φ such that

1

6
HijkΓ

ijkα± = ±(∂iΦ)Γiα± (8.7)

The bosonic fields of 11-dimensional supergravity are a metric GMN and a 3-form gauge

field CMNP (M,N = 0, 1, . . . , 10), with a vielbein eM
A satisfying eM

AeN
BηAB = GMN

used to convert coordinate indices M,N to tangent space indices A,B. The supercovariant

derivative acting on spinors is

∇̂M = ∇M −
1

288
(ΓM

NPQR − 8δN
MΓPQR)FNPQR, (8.8)

where F = dC, the ΓA are D = 11 Dirac matrices and ΓAB...C are antisymmetrised products

of gamma matrices, ΓAB...C = Γ[AΓB . . . ΓC]. The signature is (− + + · · ·+), and ∇M is

the usual Riemannian covariant derivative involving the Levi-Civita connection ωM taking

values in the tangent space group Spin(10, 1)

∇M = ∂M +
1

4
ωM

ABΓAB. (8.9)

Each solution of

∇̂Mǫ = 0, (8.10)

is a Killing spinor field that generates a supersymmetry leaving the background invariant,

so that the number of supersymmetries preserved by a supergravity background depends on

the number of supercovariantly constant spinors satisfying (8.10). Any commuting Killing

spinor field ǫ defines a Killing vector vA = ǫΓAǫ, which is either timelike or null, together

with a 2-form ǫΓABǫ and a 5-form ǫΓABCDEǫ.

The integrability conditions for (8.10) are satisfied if the background satisfies the su-

pergravity field equations

RMN =
1

12

(
FMPQRFN

PQR −
1

12
gMNFPQRSFPQRS

)
(8.11)
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and

d ∗F +
1

2
F ∧ F = 0, (8.12)

but the integrability conditions are weaker than the field equations.

Let

f =
1

24
FMPQRΓMPQR (8.13)

and note that the derivative (8.8) can be rewritten as

∇̃M = ∇M +
1

24
ΓPQRFMPQR −

1

12
ΓMf (8.14)

Then for backgrounds in which the Killing spinor satisfies

fǫ = 0 (8.15)

(such a constraint was used in [51 – 53, 42]) the Killing spinor condition simplifies to

∇̃Mǫ ≡ (∇M +
1

24
ΓPQRFMPQR)ǫ = 0 (8.16)

and the analysis of supersymmetric backgrounds in terms of the holonomy H(∇̂) [42].

Consider product spaces M = Men ×Mn of spaces of dimensions n, ñ = 11−n, so that

the coordinates can be split into xµ, yi with µ, ν = 1, . . . , ñ = 11 − n and i, j = 1, . . . , n,

with a product metric of the form

GMN =

(
Gµν(x) 0

0 Gij(y)

)
(8.17)

where gµν(x) has Lorentzian signature and gij(y) has Euclidean signature. A convenient

realisation of the gamma matrices ΓM in terms of the gamma matrices γµ on Men and the

ones Γ̃i on Mn is, for n even,

Γµ = γµ ⊗ Γ̃∗, Γi = 1 ⊗ Γ̃i (8.18)

where Γ̃∗ is the chirality operator on Med
, Γ̃∗ ∝

∏
i Γ̃i. There is a similar realisation for n

odd. A spinor ǫ decomposes as ǫ = η ⊗ α where η is a spinor on Men and α is a spinor on

Mn.

Suppose Men is ñ dimensional Minkowski space with flat metric Gµν , and the only

non-vanishing components of F are Fijkl in the ‘internal space’ Mn. Then for any spinor

α on Mn satisfying

∇̃iα = 0 (8.19)

where

∇̃i = ∇i +
1

24
ΓjklFijkl (8.20)

and the condition

FijklΓ
ijklα = 0 (8.21)

there will be a Killing spinor satisfying (8.10) of the form η⊗α where η is any (covariantly)

constant spinor in Minkowski space. Thus supersymmetric backgrounds arise when the

connection ∇̃ has a special holonomy so that there are solutions of (8.19), and in addition

each solution satisfies (8.21).
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Press, Cambridge U.K. (1981);

B. Julia, Infinite Lie algebras in physics, in Johns Hopkins workshop on unified field theories

and beyond, ed. G. Domokos et al. Baltimore (1981).

[22] C.M. Hull and P.K. Townsend, Unity of superstring dualities, Nucl. Phys. B 438 (1995) 109

[hep-th/9410167].

[23] A. Keurentjes, U-duality (sub-)groups and their topology, Class. and Quant. Grav. 21 (2004)

S1367 [hep-th/0312134].

[24] A. Keurentjes, The topology of U-duality (sub)-groups, Class. and Quant. Grav. 21 (2004)

1695 [hep-th/0309106].

[25] C.M. Hull, Gravitational duality, branes and charges, Nucl. Phys. B 509 (1998) 216

[hep-th/9705162].
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